Rplot08.png 代码语言:javascript 代码运行次数:0 运行 AI代码解释 #在完善一下 df$angle1<-ifelse(df$id<=30,96-df$id*6,96-df$id*6+180) df$hjust<-ifelse(df$id<=30,0.2,1) ggplot(df,aes(x=as.factor(id),y=value))+ geom_bar(stat="identity",fill=alpha("blue",0.7))+ coord_pol...
• Key function: geom_bar()• Key arguments to customize the plot: alpha, color, fill, linetype and size.数据类型 library(ggplot2)df <- data.frame(dose=c("D0.5", "D1", "D2"), len=c(4.2, 10, 29.5))head(df)df2 <- data.frame(supp=rep(c("VC", "OJ"), each=3...
从Bar plot上只能看到数据标准差或标准误不同;Box plot可以看到数据分布的集中性不同;Violin plot和Be 生信宝典 2018/02/05 4.5K0 R语言基础绘图教程——第7章:小提琴图 r 语言 R基础教程可先阅读:R语言编程基础第一篇:语法基础 ggplot2绘制小提琴图 library(ggplot2) library(gplots) library(RColorBrewer)...
pathview(gene.data = gene_rt3, limit = list(gene = 2),# limit调整颜色bar的上下值 pathway.id = "04110", species = "hsa", kegg.native = F,sign.pos= "bottomleft",#sign.pos更改签名的位置 out.suffix = "4") 文件夹中输出名为“hsa04110.4”的pdf文件。 图14 这个图可以更方便的查看基因...
# Basic bar plotf + geom_col()# Change fill color and add labels at the top (vjust = -0.3)f + geom_col(fill ="#0073C2FF") + geom_text(aes(label = len), vjust = -0.3)# Label inside bars, vjust = 1.6f + geom_col(fill ="#0073C2FF")+ geom_text(aes(label = len), vju...
sns.boxplot(x=BSdata['身高']); sns.boxplot(y=BSdata['身高']); #竖着放的箱线图,x与y颠倒一下 # 分组绘制箱线图,分组因子是“性别”,在x轴不同位置绘制。 sns.boxplot(x='性别',y='身高',data=BSdata); 小提琴图: sns.violinplot(x='开设', y='支出', hue='性别', data=BSdata);...
options(repr.plot.width=4, repr.plot.height=4) labs(x ="Log2 fold change",y ="-Log10(P-value)", title = my_title) + # geom_hline(aes(yintercept=1), colour="grey50", linetype="dashed", size=0.2) + # geom_vline(aes(xintercept=0.5), colour="red", linetype="dashed", si...
When you want to create a bar plot in ggplot2 you might have two different types of data sets: when a variable represents the categories and other the count for each category and when you have all the occurrences of a categorical variable, so you want to count how many occurrences exist ...
9、在geom_bar()当中,对每个条形会计算出两个值count和prop,这两个中间值也是可以拿来用的,可以当作横坐标或者纵坐标。使用方式 ·在这两个值前面加上两个点..count..和..prop.. ·在这两个值用的时候用stat()包起来 如下: ggplot(data=diamonds,mapping=aes(x=cut,y=stat(count/max(count)))+geom...
geom_errorbar(width = .1, position = position_dodge(.6))运行后输出如下:到现在图中有两个geom,一个bar,一个是errorbar,我们的数据信息已经全部通过geometry展示出来了。接下来修饰细节,首先是改变颜色,我们需要指定一下映射的颜色,具体来讲我们是改变fill的填充色,所以需要用到scale_fill_manual函数。...