题目 假设某基金第一年的收益率为-10%,第二年的收益率为10%。那么,该基金两年以来,算术平均(Arithmetic Average)年收益率,和几何平均(Geometric Average)年收益率分别是? A.-0.5%;0B.0;0C.0;-0.5%D.-0.5%;-0.5% 相关知识点: 试题来源: 解析 C ...
Definition of a Finite Series: Arithmetic Series of First/k-th Order: Geometric Series: Special Finite Series: Arithmetic Mean or Arithmetic Average: Geometric Mean or Geometric Average: Harmonic Mean: Quadratic Mean: Relations Between the Means of Two Positive Values: 3 不等式 3.1 Pure Inequalitie...
假设某基金第一年的收益率为-10%,第二年的收益率为10%。那么,该基金两年以来,算术平均(Arithmetic Average)年收益率,和几何平均(Geometric Average)年收益率分别是?
2011-4-1110:44:00几何平均回报率(geometricaveragereturn):一个特定周期中每年获得的平均综合回报率。算术平均回报率(arithmeticaveragereturn):一个特定周期中平均年份获得的回报率。布卢姆公式(平均回报率)短期预测值更接近于算术平均回报率,而长期预测值则更接近于几何平均回报率风险与回报之间存在着一种权衡关系无...
Define Geometric Average. Geometric Average synonyms, Geometric Average pronunciation, Geometric Average translation, English dictionary definition of Geometric Average. n. The n th root, usually the positive n th root, of a product of n factors. America
In addition, the processes of ranking and geometric average, like those of the arithmetic average, also converge to a Gaussian function when the number of samples is large. We also show that the central limit theorem can be used to obtain interesting approximations....
假设某基金第一年的收益率为0%,第二年的收益率为10%。那么,该基金两年以来,算术平均(Arithmetic Average)年收益率,和几何平均(Geometric Average)年收益率分别是多少? A、0;-0.5% B、5%;4.88% C、5%;5.5% D、4.88%;5% 点击查看答案 你可能感兴趣的试题 单项选择题在六度练声曲中,十六分休止符处应该进行...
The computation is seen below, and you can clearly see that as part ofthegeometric averagecalculation, relative returns are computed. crystalballservices.com crystalballservices.com 计算过程如下,可以清楚地看到在几何平均数的计算之中包含了相对收 益的计算。
2) geometry average-arithmetic average inequality 几何算术平均不等式 3) Geometric-Arithmetic mean inequality 几何-算术平均不等式 4) geometry 几何 1. Research on the Satellite s Geometry Attitude Determination; 卫星姿态的几何确定方法初探 2. Method of detecting collision of spatial pipes based ongeometry...
算术平均数与几何平均数(Arithmetic mean and geometric mean).doc,算术平均数与几何平均数(Arithmetic mean and geometric mean) The information that is worth having It comes from the accumulation of learning There must be a problem Also please criticize th