零样本学习(zero-shot learning,ZSL)旨在测试时对未见类实例进行分类;广义零样本学习(generalized zero-shot learning,GZSL)旨在对可见类和新的未见类样本进行分类。 本文方法 本文以 BERT 为 Backbone 网络。 训练 在训练阶段,本文采用了 episodic learning 方法,通过模拟多个广义零样本文本分类任务来训练模型。在每一...
Zero-Shot Learning 零样本学习是迁移学习的一种特殊场景;在零样本学习过程中,训练类集和测试类集之间没有交集,需要通过训练类与测试类之间的知识迁移来完成学习, 使在训练类上训练得到的模型能够成功识别测试类输入样例的类标签。更一般来说,如果模型在训练过程中,只使用训练类的样本进行训练,而在测试阶段可以识别从...
Chen S, Wang W, Xia B, et al. Free: Feature refinement for generalized zero-shot learning[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2021: 122-131. 导读 在统一网络中使用特征细化(FR)模块对原有的语义到视觉特征的映射进行修正,从而缓解由跨数据集所带来的偏差,...
Generalized zero shot learning (GZSL)Transductive ZSLKL DivergenceDeep transductive network (DTN)Zero Shot Learning (ZSL) aims to learn projective functions on labeled seen data and transfer the learned functions to unseen classes by discovering their relationship with semantic embeddings. However, the ...
《Generalized Zero-Shot Learning Via Over-Complete Distribution》R Keshari, R Singh, M Vatsa [IIIT-Delhi] (2020) http://t.cn/A6ZQMhJJ view:http://t.cn/A6ZQMhJ6
understanding [52]. The main idea of zero-shot learning is to recognize objects of target classes by 32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada. confidence calibration uncertainty calibration +
论文链接:http://openaccess.thecvf.com/content_CVPR_2019/papers/Huang_Generative_Dual_Adversarial_Network_for_Generalized_Zero-Shot_Learning_CVPR_2019_paper.pdf 创新:论文提出了一个新颖的模型,该模型为三种不同的方法提供了统一的框架:视觉→语义映射,语义→视觉映射和深度度量学习。
From generalized zero-shot learning to long-tail with class descriptors Dvir Samuel1 Yuval Atzmon2 Gal Chechik1,2 1Bar-Ilan University, Ramat Gan, Israel 2NVIDIA Research, Tel Aviv, Israel dvirsamuel@gmail.com, yatzmon@nvidia.com, gal.chechik@biu.ac.il ...
Detection Is All You Need: A Feasible Optimal Prior-Free Black-Box Approach For Piecewise Stationary Bandits 31 p. Vintix: Action Model via In-Context Reinforcement Learning 11 p. Scalable-Softmax Is Superior for Attention 14 p. Do LLMs Strategically Reveal, Conceal, and Infer Information...
With the ever-increasing amount of data, the central challenge in multimodal learning involves limitations of labelled samples. For the task of classification, techniques such as meta-learning, zero-shot learning, and few-shot learning showcase the ability to learn information about novel classes bas...