Rao1 has shown in a lemma that a generalized inverse (g-inverse) always exists, although in the case of a singular matrix it may not be unique.doi:10.1038/1981019b0KOOP, J. C.NatureJ. C. Koop, "Generalized inverse of a singular matrix," Nature, vol. 200, p. 716, 1963.
Franceschet, "Approximations of the general- ized inverse of the graph Laplacian matrix," Internet Mathemat- ics, vol. 8, no. 4, pp. 456-481, 2012.Bozzo E, Franceschet M. Approximations of the generalized inverse of the graph laplacian matrix. Internet Mathematics 2012; 8:1-26....
美 英 un.广义逆矩阵 英汉 un. 1. 广义逆矩阵 例句 释义: 全部,广义逆矩阵
Generalized inverse matrices, Thomas L. Boullion and Patrick L. Odell, Wiley, New York, 1971. No. of pages: 101. Price: £4.75disease resistanceplant diseasesplant pathogenic fungiplant pathogensracestomatoesNo abstract is available for this article.doi:10.1002/nme.1620050116...
Mosic, DijanaZhang, DaochangarXivD. Mosic´, H. Zou, J. Chen, The generalized Drazin inverse of the sum in a Banach algebra, Ann. Funct. Anal. 8 (2017) 90-105.D. Mosic´, H. Zou, J. Chen. The generalized Drazin inverse of the sum in a Banach algebra. Annals of Functional...
Moore–Penrose inverseDrazin inverseIndexCore inversea b s t r a c tThe purpose of this paper is to introduce a new generalized inverse, called DMP inverse,associated with a square complex matrix using its Drazin and Moore–Penrose inverses.DMP inverse extends the notion of core inverse, ...
研究点推荐 Neutron scattering Matrix Spin scattering 站内活动 0 关于我们 百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。了解更多>> 友情链接 ...
In this paper R.E. Cline's formula for the generalized inverse of the partitioned matrix (U, V) is simplified. The result is then applied to a particular case investigated by A. Ben-Israel.doi:10.1016/0024-3795(71)90031-0L.Mihályffy...
The radial part of the L... R Rado - 《Mathematical Proceedings of the Cambridge Philosophical Society》 被引量: 40发表: 1956年 On V-orthogonal projectors associated with a semi-norm For any n × p matrix X and n × n nonnegative definite matrix V, the matrix X(X′V X)+ X′V ...
The matrix of this system is not degenerate if 0 ∈ conv({p1′,…, pn+1′}), which holds true if t and x are close enough to t0, x0. The inverse matrix has a bounded norm for (p1′,…, pn+1′) from some neighborhood of (p10,…, pn+10). Thus, the following bound holds...