ST-GCN是TCN与GCN的结合。TCN,对时间维度的数据进行卷积操作;GCN,则对空间维度的数据进行卷积操作。GCN属于GNN,而GNN的基础是图论。神经网络处理的传统数据都是欧式距离结构的数据,比如二维的图像、一维的声音等等。而对于非欧式距离结构的数据,比如社交网络、交通运输网等等,传统的网络结构无法直接处理,而GNN就...
ST-GCN:Spatial Temporal Graph Convolutional Networks时空图卷积网络,是在GCN的基础上提出的。核心观点是将TCN与GCN相结合,用来处理有时序关系的图结构数据。网络分为2个部分:GCN_Net与TCN_Net。 GCN_Net对输入数据进行空间卷积,即不考虑时间的因素,卷积作用于同一时序的不同点的数据。TCN_Net对数据进行时序卷积,...
ST-GCN:Spatial Temporal Graph Convolutional Networks时空图卷积网络,是在GCN的基础上提出的。核心观点是将TCN与GCN相结合,用来处理有时序关系的图结构数据。网络分为2个部分:GCN_Net与TCN_Net。 GCN_Net对输入数据进行空间卷积,即不考虑时间的因素,卷积作用于同一时序的不同点的数据。TCN_Net对数据进行时序卷积,...
ST-GCN:Spatial Temporal Graph Convolutional Networks时空图卷积网络,是在GCN的基础上提出的。核心观点是将TCN与GCN相结合,用来处理有时序关系的图结构数据。网络分为2个部分:GCN_Net与TCN_Net。 GCN_Net对输入数据进行空间卷积,即不考虑时间的因素,卷积作用于同一时序的不同点的数据。TCN_Net对数据进行时序卷积,...
图中的MS-GCN叠加两层MS-TCN称为跨时空残差连接是为了解决MS-G3D感受野太大导致信息变得稀疏的问题。 MS-G3D是同期网络中最复杂的一个,运行速度最慢,但效果也最好。 4. [PA-ResGCN] Stronger, Faster and More Explainable: A Graph Convolutional Baseline for Skeleton-based Action Recognition (ACM-MM 202...
ST-GCN:Spatial Temporal Graph Convolutional Networks时空图卷积网络,是在GCN的基础上提出的。核心观点是将TCN与GCN相结合,用来处理有时序关系的图结构数据。网络分为2个部分:GCN_Net与TCN_Net。 GCN_Net对输入数据进行空间卷积,即不考虑时间的因素,卷积作用于同一...
self-attention层数为1。非对称卷积网络由7个卷积层组成,核大小S=3。Spatial-temporal GCN 和 temporal-spatial GCN 分别级联 1 层。 TCN 级联 4 层。 阈值 ξ 根据经验设置为 0.5。 采用 PRelu作为非线性激活 δ(·)。 所提出的方法使用 Adam 优化器进行了 150 个 epoch 的训练,数据批次大小为 128。初始...
ST-GCN是TCN与GCN的结合。TCN,对时间维度的数据进行卷积操作;GCN,则对空间维度的数据进行卷积操作。GCN属于GNN,而GNN的基础是图论。神经网络处理的传统数据都是欧式距离结构的数据,比如二维的图像、一维的声音等等。而对于非欧式距离结构的数据,比如社交网络、交通运输网等等,传统的网络结构无法直接处理,而GNN就是用来...
经典的gcn属于直推式。这种模型直接用归一化的邻接矩阵或者说拉普拉斯矩阵 与 所有节点的特征组成的矩阵...
ST-GCN 使用的是 TCN,由于形状固定,我们可以使用传统的卷积层完成时间卷积操作。为了便于理解,可以类比...