如下图所示,所提出的模型由三个主要部分组成:GCN,LSTM和GAN。 首先,我们利用GCN来探索每个单个graph snapshot的局部拓扑特征。然后,将GCN得出的的综合表示输入到LSTM网络中,以捕获动态图的演化模式。此外,我们应用GAN通过一个对抗过程生成高质量的预测graph snapshot,我们使用GCN以及LSTM构建生成网络G,并介绍另一个全...
图神经网络(Graph Neural Network, GNN)是指神经网络在图上应用的模型的统称,根据采用的技术不同和分类方法的不同,又可以分为下图中的不同种类,例如从传播的方式来看,图神经网络可以分为图卷积神经网络(GCN),图注意力网络(GAT,缩写为了跟GAN区分),Graph LSTM等等,本质上还是把文本图像的那一套网络结构技巧借鉴过...
此外,节点隐藏状态的更新是一个顺序过程,可以从RNN核(如GRU和LSTM)中受益。 图的边上还有一些信息特征,无法在模型中有效地建模。例如,知识图中的边具有关系的类型,通过不同边的消息传播应根据其类型而不同。此外,如何学习边缘的隐藏状态也是一个重要的问题。 如果 很大,那么如果我们专注于节点的表示而不是图本身,...
然后,文章使用图卷积网络GCN模型学习空间特征。如下图所示,文章指出:假设节点1为中心道路,GCN模型可以得到中心道路与其周围道路之间的拓扑连接关系,对路网拓扑结构和道路属性进行编码,最终学习空间依赖关系。 4.2:时间依赖性建模 文章采用GRU来学习时间依赖关系。由于LSTM结构复杂,训练时间较长,相对地,GRU参数较少,训练能...
图神经网络(Graph Neural Network, GNN)是指神经网络在图上应用的模型的统称,根据采用的技术不同和分类方法的不同,又可以分为下图中的不同种类,例如从传播的方式来看,图神经网络可以分为图卷积神经网络(GCN),图注意力网络(GAT,缩写为了跟GAN区分),Graph LSTM等等,本质上还是把文本图像的那一套网络结构技巧借鉴过...
当输入的序列存在重要信息时,遗忘门f的值就会接近0,那么输入门i的值就会接近1,此时LSTM模型遗忘过去的记忆,记录重要的记忆。 三、GRU(门控循环单元) 3.1 GRU结构 由于LSTM门控网络结构过于复杂与冗余 GRU将遗忘门和输入门合并乘更新门,同时将记忆单元与隐藏层合并成重置门,进而让整个结构运算变得更加就简化且性能...
文本分类是自然语言处理过程中一个非常重要和经典的问题,在论文和实践过程中可以说经久不衰的任务。或多或少接触NLP的同学,应该比较清楚目前文本分类的模型众多,比如Text-RNN(LSTM),Text-CNN等,但是当时很少有关于将神经网络用于文本分类的任务中。 本文提出一种将图卷积网络模型用于文本分类的模型,主要思路为基于词语...
针对 MCNN 和 AGCN,研究人员设计了消融实验来验证二者结合的有效性,并验证了 LSTM 在 AGCN 中的作用。结果如表 2 所示。可以观察到,MCNN 的性能优于 AGCN,说明 MCNN 中 MCAM 产生的全局信息有利于蛋白质预测。而且,当 MCNN 和 AGCN 在网络中结合时,性能优于每个模块单独预测。这表明这种组合不仅从局部和...
针对MCNN 和 AGCN,研究人员设计了消融实验来验证二者结合的有效性,并验证了 LSTM 在 AGCN 中的作用。结果如表 2 所示。 可以观察到,MCNN 的性能优于 AGCN,说明 MCNN 中 MCAM 产生的全局信息有利于蛋白质预测。而且,当 MCNN 和 AGCN 在网络中结合时,性能优于每个模块单独预测。这表明这种组合不仅从局部和全局...