每一个节点的周围结构可能都是独一无二的,这种结构的数据,就让传统的CNN、RNN瞬间失效。所以很多学者从上个世纪就开始研究怎么处理这类数据了。这里涌现出了很多方法,例如GNN、DeepWalk、node2vec等等,GCN只是其中一种,这里只讲GCN,其他的后面有空再讨论。
1.2 GNN起源 GNN起源于两种动机,一种动机来自于卷积神经网络(CNN),另一种动机来自于图嵌入(graph embedding)。 第一种来源于CNN,CNN能够提取出多尺度的局部空间特征,并将它们进行组合来构建更加高级的表示(expressive representations)。如果深入研究CNN和图结构的特点,可以发现CNN的核心特点在于:局部连接(local connecti...
可能做大数据或者人工智能的觉得GNN并没有什么特殊,但个人觉得对于有明确物理结构的研究对象,GNN比CNN的...
这里涌现出了很多方法,例如GNN、DeepWalk、node2vec等等,GCN只是其中一种,这里只讲GCN,其他的后面有空再讨论。 GCN,图卷积神经网络,实际上跟CNN的作用一样,就是一个特征提取器,只不过它的对象是图数据。GCN精妙地设计了一种从图数据中提取特征的方法,从而让我们可以使用这些特征去对图数据进行节点分类(node ...
GNN a gentle introduction to graph neural network 对图神经网络的简易介绍 神经网络被用在处理图的结构和性质上面 1、前言 图这个数据结构相对于之前讨论的文本(文本是一个序列)、图片(图片是一个矩阵),图相对来说更加复杂一点 上一次机器学习关注图还是在十几年前,在社交网络比较流行的时候,但是过去一些年由于...
本博客记录了本人对于该文的一点理解,仅供自己学习GNN、GCN使用。 1. 图 :一种非欧数据结构 在欧氏空间中,卷积网络(CNN)具有平移不变性、权值共享、局部连接、分层次表达的特点,而图片及音频信号在其域中具有局部的平移不变性,因此卷积神经网络在图片及音频处理问题上表现良好。
在Computer Vision里我们用CNN可以很有效地提取空间特征。但是有一点需要注意:CNN处理的图像或者视频数据中像素点(pixel)是排列成成很整齐的矩阵(如下图所示,也就是很多论文中所提到的Euclidean Structure)。 关于GNN 详情请点击。 与之相对应,科学研究中还有很多Non Euclidean Structure的数据,如上图右...
一GCN简介 GNN 模型主要研究图节点的表示(Graph Embedding),图边结构预测任务和图的分类问题,后两个任务也是基于 Graph Embedding 展开的。目前论文重点研究网络的可扩展性、动态性、加深网络。 谱卷积有理论支持,但有时候会受到拉普拉斯算子的限制;而空间域卷积更加
将来GNN的趋势会只增不减,只要我们好好利用它,相信能够很好的收获。 概念:它不同于只用于网格结构数据的传统模型:LSTM,CNN等。是一种处理广义拓扑图结构的数据,深入挖掘其特征和规律的工具。(社交网络,通信网络,蛋白质分子等),这里也捎带补充一下广义拓扑图的概念:将实体抽象成与大小形状无关的点,点之间连接成线...
每一个节点的周围结构可能都是独一无二的,这种结构的数据,就让传统的CNN、RNN瞬间失效。所以很多学者从上个世纪就开始研究怎么处理这类数据了。这里涌现出了很多方法,例如GNN、DeepWalk、node2vec等等,GCN只是其中一种,这里只讲GCN,其他的后面有空再讨论。