Gaussian Q-Function Yogananda Isukapalli, Student Member, IEEE, and Bhaskar D. Rao, Fellow, IEEE Abstract—In this letter we propose an approximation for the Gaussian Q-function that enables simpler evaluation of important communication system performance metrics. The approximation enables derivation of...
λ=N∑je−εj/(kt)=N∑igie−εi/(kt) 定义上式分母为粒子的配分函数(partition function),用q 表示,即 (3)q=∑je−εj/(kt) (4)q=∑igie−εi/(kt) (3)式和(4)式分别为量子态配分函数和能级配分函数,将其分别带入(1)式和(2)式,可得 (6)ni=Nqgie−εi/(kt)(5)nj=N...
GaussianQ-functionFadingThis letter is an application of various exponential-based approximations to Gaussian Q -function, which are used to derive a generalized closed-form solution for the symbol error probability (SEP) over recently introduced Fluctuating Beckmann fading model. This model covers all...
摘要: This paper presents some useful approximations to the Gaussian Q-function with an application to computation of bit error probability (BEP) of M-ary phase shift keying (MPSK) modulation scheme. Computational results are provided to compare various approximations to Gaussian Q-function....
The existing approximations for the Gaussian Q-function have been developed bearing in mind applications that require high estimation accuracies (e.g., derivation of the error probability for digital modulation schemes). Unfortunately, the associated mathematical expressions are too complex to be easily...
那么如果我们把这个 n 维的随机变量分成两部分: p 维的x_a 和q 维的x_b ,满足 n=q+p ,那么按照均值向量 \mu 和协方差矩阵 \Sigma 的分块规则,就可以写成: x=\begin{bmatrix}x_a\\x_b\end{bmatrix}_{p+q}\quad\mu=\begin{bmatrix}\mu_a\\\mu_b\end{bmatrix}_{p+q}\quad \Sigma=\...
由于放缩变换都是沿着坐标轴,所以只需要一个3D向量s,旋转则用四元数q表达。机器学习通常使用梯度下降对参数进行优化,但直接优化Σ难以保证半正定,所以论文的方法是继续将梯度传递到s,q进行优化。 至于如何在优化中自适应地生成新椭球,并赋予属性就是另一个有些曲折的故事了,本文作为基础先挖个坑。
由于放缩变换都是沿着坐标轴,所以只需要一个3D向量s,旋转则用四元数q表达。机器学习通常使用梯度下降对参数进行优化,但直接优化Σ难以保证半正定,所以论文的方法是继续将梯度传递到s,q进行优化。 至于如何在优化中自适应地生成新椭球,并赋予属性就是另一个有些曲折的故事了,本文作为基础先挖个坑。
摘要: We present bounds of quadratic form for the logarithm of the Gaussian Q-function. We also show an analytical method for deriving log-quadratic approximations of the Q-function and give an approximation with absolute error less than 10^{-3} 10^{-3} ....
in [0, ∞), we present an accurate and efficient approximation to the Gaussian Q-function, which is expressed as a finite sum of exponential functions... Q Shi,Y Karasawa - 《IEEE Communications Letters》 被引量: 45发表: 2011年