importnumpyasnpimportmatplotlib.pyplotaspltimportmpl_toolkits.axisartistasaxisartistfrommpl_toolkits.mplot3dimportAxes3D#画三维图不可少frommatplotlibimportcm#cm 是colormap的简写#定义坐标轴函数defsetup_axes(fig,rect):ax=axisartist.Subplot(fig,rect)fig.add_axes(ax)ax.set_ylim(-4,4)#自定义刻度# ax....
import numpy as np from sklearn.mixture import GaussianMixture# Suppose Data X is a 2-D Numpy array (One apple has two features, size and flavor) GMM = GaussianMixture(n_components=3, random_state=0).fit(X) GaussianMixtureis the function,n_componentsis the number of underlying Gaussian d...
1.给定mean和covariance(kernel) function,比如最简单的mean默认为0,,kernel = Standard Exponential(SE...
高斯分布(Gaussian Distribution)的概率密度函数(probability density function) 对应于numpy中: 参数的意义为: 我们更经常会用到的np.random.randn(size)所谓标准正态分布(μ=0,σ=1μ=0,σ=1),对应于np.rando
高斯核函数的 python 实现如下 importnumpyasnp defgaussian_kernel(x1, x2, l=1.0, sigma_f=1.0): """Easy to understand but inefficient.""" m, n = x1.shape[0], x2.shape[0] dist_matrix = np.zeros((m, n), dtype=float) ...
高斯核函数的 python 实现如下 代码语言:javascript 代码运行次数:0 运行 AI代码解释 import numpy as np def gaussian_kernel(x1, x2, l=1.0, sigma_f=1.0): """Easy to understand but inefficient.""" m, n = x1.shape[0], x2.shape[0] dist_matrix = np.zeros((m, n), dtype=float) for...
高斯核函数的 python 实现如下: importnumpyasnpdefgaussian_kernel(x1, x2, l=1.0, sigma_f=1.0):"""Easy to understand but inefficient."""m, n = x1.shape[0], x2.shape[0] dist_matrix = np.zeros((m, n), dtype=float)foriinrange(m):forjinrange(n): ...
⾼斯分布(Gaussian Distribution)的概率密度函数(probability density function)对应于numpy中:numpy.random.normal(loc=0.0, scale=1.0, size=None)参数的意义为:loc:float 此概率分布的均值(对应着整个分布的中⼼centre)scale:float 此概率分布的标准差(对应于分布的宽度,scale越⼤越矮胖,scale越...
高斯核函数的 python 实现如下 import numpy as npdef gaussian_kernel(x1, x2, l=1.0, sigma_f=1.0):"""Easy to understand but inefficient.""" m, n = x1.shape[0], x2.shape[0] dist_matrix = np.zeros((m, n), dtype=float)for i in range(m):for j in range(n): dist_matrix[i...
For example, the following code learns the cosine function: import numpy as np from gmm import GMM from plot_gmm import draw2dgmm from test_func import noisy_cosine import pylab as pl x,y = noisy_cosine() data = np.vstack([x,y]).transpose() pl.scatter(data[:,0],data[:,1]) gmm...