title 版本依赖流向 A[NumPy 1.18.0] --> B[使用] A --> C[被SciPy1.4.1使用] B --> D[输出结果] 配置调优 高斯函数的性能可以通过调优配置来改善。在这里,我将展示一些可能的性能参数,并分享一个示范代码块: defgaussian_function(x,mean=0,variance=1):""" 计算高斯函数值 :param x
importnumpyasnpimportmatplotlib.pyplotaspltimportmpl_toolkits.axisartistasaxisartistfrommpl_toolkits.mplot3dimportAxes3D#画三维图不可少frommatplotlibimportcm#cm 是colormap的简写#定义坐标轴函数defsetup_axes(fig,rect):ax=axisartist.Subplot(fig,rect)fig.add_axes(ax)ax.set_ylim(-4,4)#自定义刻度# ax....
ax.axis["x"].set_axisline_style("-|>", size=1.5)return(ax)#1_dimension gaussian functiondefgaussian(x,mu,sigma): f_x= 1/(sigma*np.sqrt(2*np.pi))*np.exp(-np.power(x-mu, 2.)/(2*np.power(sigma,2.)))return(f_x)#2_dimension gaussian functiondefgaussian_2(x,y,mu_x,mu_y...
代码片段:importmatplotlib.pyplotaspltimportnumpyasnp#高斯核函数defgaussian_kernel(x1,x2,l=0.5,si...
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import codecs, json # Define the parameters of the Gaussian function mu = [10, 10, 10] sigma = [[2, 2, 0], [0, 1, 0], [2, 0, 1]] cov = [[0.46426650881767273, -0.6950497627258301, -...
高斯核函数的 python 实现如下 代码语言:javascript 代码运行次数:0 运行 AI代码解释 import numpy as np def gaussian_kernel(x1, x2, l=1.0, sigma_f=1.0): """Easy to understand but inefficient.""" m, n = x1.shape[0], x2.shape[0] dist_matrix = np.zeros((m, n), dtype=float) for...
高斯核函数的 python 实现如下 importnumpyasnp defgaussian_kernel(x1, x2, l=1.0, sigma_f=1.0): """Easy to understand but inefficient.""" m, n = x1.shape[0], x2.shape[0] dist_matrix = np.zeros((m, n), dtype=float) ...
高斯分布(Gaussian Distribution)的概率密度函数(probability density function) 对应于numpy中: 参数的意义为: 我们更经常会用到的np.random.randn(size)所谓标准正态分布(μ=0,σ=1μ=0,σ=1),对应于np.rando
#本节内容为连续分布 import numpy as np import scipy.stats as st import matplotlib.pyplot as plt...
Currently, there are many libraries that can implementGaussian mixturemodels; these include packages developed with Python, such asPyBGMMandnumpy-ml, and packages developed with C++, such asArmadillo. There are also some GMM packages for specialized fields. Bruneau et al.[54]proposed a new Python...