Gauss Jordan elimination with pivoting As in Gaussian elimination, in order to improve the numerical stability of the algorithm, we usually perform partial pivoting in step 6, that is, we always choose the row interchange that moves the largest element (in absolute value) to the pivotal position...
Gauss-Jordan elimination 英 [gaʊs ˈdʒɔ:dn ɪˌlɪmɪˈneɪʃn] 美 [gaʊs ˈdʒɔrdn ɪˌlɪmɪˈneɪʃn]网络 消去法; 约当消去法; 高斯...
这里先给出一些铺垫:既然求逆,前提肯定是方阵A是可逆的,对矩阵A进行几种初等变换可以得到上三角矩阵U,假设分别经过了3种初等变换E,F,G最后得到U,那么A=GFEU,同时A总可以分解为一个下三角矩阵与一个上三角矩阵相乘,即A=LU,其中L为下三角矩阵,因此L=GFE。 当将A和E放在一起组成一个新的矩阵时,将A变化为...
最后将最后一行上面所有行的倒数第二列消去 intgauss_jordan(intn){//a为增广矩阵intr,w=0;for(inti=0;i<n&&w<n;w++,i++){//进行到第i列,第w行intr=w;for(intj=w+1;j<n;j++)if(fabs(a[j][i])>fabs(a[r][i]))r=j;//找到当前列绝对值最大的行if(fabs(a[r][i])<eps){w--;c...
Gauss–Jordan elimination is a procedure for converting a matrix to reduced row echelon form using elementary row operations. It is a refinement of Gaussian elimination. The reduced row echelon form of a matrix is unique, but the steps of the procedure are not. Two linear systems are equivalent...
Jordan n. 约旦,约旦河,尿壶 jordan 低速磨浆机 Gauss 高斯(①姓氏 ②Karl Friedrich gauss 高斯(①姓氏 ②Karl Friedrich elimination n.[C,U] 1.排除,消除 2.(比赛中)淘汰 3.消灭,干掉(尤指敌人或对手) zero elimination 【电】 零消除 elimination addition 【化】 消除-加成 non elimination...
P27.8 Inverse of a Matrix and Gauss-Jordan Elimination-Part 2 08:26 P37.8 Inverse of a Matrix and Gauss-Jordan Elimination-Part 3 11:36 P47.8 Inverse of a Matrix and Gauss-Jordan Elimination-Part 4 11:16 追星安利赢奖金活动来啦!
11) Lines 40 to 51. The Gauss-Jordan elimination, as described in the analysis, is executed.问题补充:匿名 2013-05-23 12:21:38 11)系40 〜51高斯 - 约旦消去法,如在分析中所述,被执行。 匿名 2013-05-23 12:23:18 11)行40至51。 gauss-jordan消除的,如中所述的分析,是执行。
百度试题 结果1 题目Gauss-Jordan elimination.x_1+2x_2-x_3=-3x_2+x_3=-22x_1+3x_2+x_3=-0 相关知识点: 试题来源: 解析 x_1=1x_2=0x_3=-2反馈 收藏
Nipkow, T.: Gauss-Jordan elimination for matrices represented as functions. In: Klein, G., Nipkow, T., Paulson, L. (eds.) The Archive of Formal Proofs, http://afp.sourceforge.net/entries/Gauss-Jordan-Elim-Fun.shtml . Formal proof development, 2011...