基于Gated-SCNN的图像分割模型 图像分割目前存在的问题 现在的deep CNN能提取图像中很多feature map,比如图像的纹理、颜色、形状特征,但对于分割任务来说这并不是我们全部需要的,分割任务最理想的是根据边界和形状信息进行识别,如果信息流中包含了很多颜色、纹理可能会导致识别问题。 该网络提出的解决方法 针对上述问题,...
原文链接:https://arxiv.org/pdf/1612.08083.pdf 参考代码:anantzoid/Language-Modeling-GatedCNN 之前语言模型的主流方法都是基于RNN,本篇论文提出了一种新颖的门控机制,结合CNN网络应用到语言模型。该网络包含多层,与经典语法形式相似,能分层次地分析输入,构建了增加粒度的句法树结构。与RNN逐个处理输入序列不同,CN...
Gated Shape CNN 相当于是作者把shape这一个分支独立出来,因为考虑到shape对于分割而言是非常具有意义的,其实对于很多任务而言都是具有意义的,比如双目深度估计或者是单目深度估计,都是比较有意义的。作者整体的pipline如下 作者整体的pipline如上图,就是用backbone接出来几路,用于做gate相关的东西,作者代码里面写的很...
model.summary() 上述示例代码构建了一个基于GRU的语音识别模型。该模型包含一个GRU层、一个Dropout层和一个全连接层,其中GRU层用于捕捉语音信号的时间序列信息,Dropout层用于减少过拟合,全连接层用于输出识别结果。在编译模型时,使用交叉熵损失函数和Adam优化器。您可以根据需要调整模型参数,例如输入维度、隐藏状态维度...
第一个问题非常好理解,与CNN相同,当网络很深时,反向传播就很难从后向前对网络的前几层在计算序列上产生影响,越往前计算出的导数越小直至0,这是很直观的梯度消失问题。偶尔也会遇到梯度爆炸的问题,即计算出的导数越来越大。这是基本RNN结构的缺点。
代码:https://github.com/nv-tlabs/GSCNN/blob/master/network/gscnn.py 论文:ICCV_2019 翻译:论文阅读笔记 如何将知识分离出来? 作者在论文中argue到,CNN在设计的过程中有一个固有的无效性,因为他们会将color,shape和纹理信息一起处理(感觉可以找个时间介绍一些,图像中的color,shape或者texture信息对于图像的特征...
代码:https://github.com/XudongLinthu/context-gated-convolution 这是来自哥伦比亚大学和腾讯 AI lab 的工作,也是一种即插即用的模块。 论文的动机为:Neurons do change their function according to contexts and task. 但是传统的CNN并不具有这样的性质。当前也出现了一些方法,作者命名为global feature interaction...
作者总结了Vision Transformer成功的三大法宝是通过self-attention实现输入自适应(input-adaptive)、远距离(long-range)和高阶空间交互(hige-order spatial interaction)的空间建模新方法。 之前的工作已经成功地将Vision Transformer的元架构、输入自适应权值生成策略和大范围建模能力迁移到CNN模型中,但尚未对高阶空间交互机...
Python毕业设计-基于pytorch + CNN的猫狗图像识别源码+文档说明(高分毕设) Python毕业设计-基于pytorch + CNN的猫狗图像识别源码+文档说明(高分毕设),含有代码注释,新手也可看懂,个人手打98分项目,导师非常认可的高分项目,毕业设计、期末大作业和课程设计高分必看,下载下来,简单部署,就可以使用。该项目可以直接作为毕设...
它也有低时间消耗在训练和测试上。 核心网络流程说明 使用CNN提取不同类型的特征对一个单词 提取单词的局部内容特征 在GRN中组成全局内容特征 数据集说明 了解更多关于《计算机视觉与图形学》相关知识,请关注公众号: 下载我们视频中代码和相关讲义,请在公众号回复:计算机视觉课程资料...