1.GCN的缺点也是很显然易见的,第一,GCN需要将整个图放到内存和显存,这将非常耗内存和显存,处理不了大图;第二,GCN在训练时需要知道整个图的结构信息(包括待预测的节点)。 2.GraphSAGE的优点: (1)利用采样机制,很好的解决了GCN必须要知道全部图的信息问题,克服了GCN训练时内存和显存的限制,即使对于未知的新节点,...
classEncoder(nn.Module):"""Encodes a node's using 'convolutional' GraphSage approach"""def__init__(self,features,feature_dim,embed_dim,adj_lists,aggregator,num_sample=10,gcn=False,cuda=False):"""初始化:param features: 特征矩阵:param feature_dim: 特征数:param embed_dim: 嵌入维度:param adj...
GCN原本使用了归一化邻接矩阵,新加入节点时要重新计算该矩阵,这是导致transductive的根源,计算需要改变该矩阵的信息,归一化矩阵已经整体变动,再次前向传播后的节点embedding和之前会有一定的偏移,故预测效果不会很好 ,需要重新训练 在GraphSAGE中没有使用该矩阵,而是通过学习一个Aggregator让GCN学会聚合其邻居节点的feature。
1.graph embedding(GE)1.1.图中学习的分类 1.2.相似度度量方法2.Graph neural network2.1.Graph convolutional network(GCN) 2.1.1.引子:热传播模型 2.1.2.热传播在graph上的求解:傅里叶变换 2.2.分析下graph neural中哪些东西可以做? 2.3.损失函数3.GraphSAGE:generalized aggregation方法4.Gated Graph Neural Netw...
GraphSAGE 由Inductive Representation Learning on Large Graphs提出,该方法提供了一种通用的归纳式框架,使用结点信息特征为未出现过的(unseen)结点生成结点向量,这一方法为后来的 PinSage(GCN 在商业推荐系统首次成功应用)提供了基础。 论文标题:Inductive Representation L...
2. Graph Sample and Aggregate(GraphSAGE)[8] 为了解决GCN的两个缺点问题,GraphSAGE被提了出来。在介绍GraphSAGE之前,先介绍一下Inductive learning和Transductive learning。注意到图数据和其他类型数据的不同,图数据中的每一个节点可以通过边的关系利用其他节点的信息。这就导致一个问题,GCN输入了整个图,训练节点收集...
GAT(着重考虑这部分的处理,把这部分移植到我们的模型中) 基本的图神经网络算法GCN, 使用采样和聚合构建的inductive learning框架GraphSAGE, 然而图结构数据常常含有...deepwalk,LINE,node2vec,SDNE等模型能够高效地得到每个节点的embedding。然而,这些方法无法有效适应动态图中新增节点的特性, 往往需要从头训练或至少局部...
一、GCN的缺点 图卷积网络(GCN)是一种有效的图形神经网络,它能够很好地捕获图形的拓扑结构和节点特征。然而,它也存在一些缺点。首先,GCN假设图形数据的拓扑结构是固定的,而在实际应用中,图形数据的拓扑结构往往是动态变化的。此外,GCN只能处理同质的图形,不能处理多模态或异质的图形。此外,GCN对大规模图形的处理能力...
GNN图神经网络实战解析:GCN、GAT、PyG、GTN、DySAT、Graph 视频地址:GNN图神经网络实战解析:GCN、GAT、PyG、GTN、DySAT、GraphSAGE全详解,清华大佬带你3小时快速拿下!
图神经网络三剑客:GCN、GAT与GraphSAGE 摘要: 2019 年号称图神经网络元年,在各个领域关于图神经网络的研究爆发式增长。本文主要介绍一下三种常见图神经网络:GCN、GAT 以及 GraphSAGE。前两者是目前应用比较广泛的图神经网络,后者则为图神经网络的工程应用提供 ... ...