GitHub is where people build software. More than 100 million people use GitHub to discover, fork, and contribute to over 420 million projects.
https://github.com/eriklindernoren/PyTorch-GAN/blob/master/implementations/gan/gan.pygithub.com/eriklindernoren/PyTorch-GAN/blob/master/implementations/gan/gan.py 一、GAN 有什么用? GAN 即 Generative Adversarial Nets,生成对抗网络,从名字上我们可以得到两个信息: 首先,它是一个生成模型 其次,它的训...
Pytorch implementation of different GAN models. Contribute to Po-V/GAN-Pytorch development by creating an account on GitHub.
$ git clone https://github.com/eriklindernoren/PyTorch-GAN $ cd PyTorch-GAN/ $ sudo pip3 install -r requirements.txt Implementations Auxiliary Classifier GAN Auxiliary Classifier Generative Adversarial Network Authors Augustus Odena, Christopher Olah, Jonathon Shlens Abstract Synthesizing high resolution...
3DGAN-Pytorch. Contribute to rimchang/3DGAN-Pytorch development by creating an account on GitHub.
近日,机器之心在 GitHub 上看到了一个非常有意义的项目 PyTorch-StudioGAN,它是一个 PyTorch 库,提供了条件 / 无条件图像生成的代表性生成对抗网络(GAN)的实现。据主页介绍,该项目旨在提供一个统一的现代 GAN 平台,这样机器学习领域的研究者可以快速地比较和分析新思路和新方法等。该项目的作者为韩国浦项科技...
PyTorch 实现地址:https://github.com/eriklindernoren/PyTorch-GAN Keras 实现地址:https://github.com/eriklindernoren/Keras-GAN 生成对抗网络及其变体的实现分为基于 Keras 和基于 PyTorch 两个版本。它们都是按照原论文实现的,但模型架构并不一定完全和原论文相同,作者关注于实现这些论文最核心的思想,而并不确定...
Implementation ofGigaGAN(project page), new SOTA GAN out of Adobe. I will also add a few findings fromlightweight gan, for faster convergence (skip layer excitation) and better stability (reconstruction auxiliary loss in discriminator) It will also contain the code for the 1k - 4k upsamplers...
git clone https://github.com/pytorch/vision cd vision python setup.py install Dataset & Preparation DownloadMarket1501 Dataset Preparation: Put the images with the same id in one folder. You may use python prepare.py Remember to change the dataset path to your own path. ...
https://junyanz.github.io/CycleGAN Deep Convolutional GAN 深度卷积生成对抗网络(DCGAN)模型是作为无监督学习的一种方法而提出的,GAN在其中是最大似然率技术的一种替代。 Paper: Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks ...