手把手教你用GAN实现半监督学习 本文主要介绍如何在tensorflow上仅使用200个带标签的mnist图像,实现在一万张测试图片上99%的测试精度,原理在于使用GAN做半监督学习。前文主要介绍一些原理部分,后文详细介绍代码及其实现原理。前文介绍比较简单,有基础的同学请掠过直接看第二部分,文章末尾给出了代码GitHub链接。对GAN不了...
GAN全称是 Generative Adversarial Network,即生成对抗网络。在14年被Goodfellow等提出后即热度不断一经推出便引爆全场,此后各种花式变体DCGAN、WGAN、CGAN、CYCLEGAN、STARGAN、LSGAN等层出不穷,在“换脸”、“换衣”、“换天地”等应用场景下生成的图像、视频以假乱真,好不热闹。 生成对抗网络一般由一个生成器(生成...
生成对抗网络(Generative Adversarial Network,简称GAN),主要结构包括一个生成器G(Generator)和一个判别器D(Discriminator)。 生成器(Generator),能够输入一个向量,输出需要生成固定大小的像素图像 判别器(Discriminator),用来判别图片是真的还是假的,输入图片(训练的数据或者生成的数据),输出为判别图片的标签 5.1.2.2 理...
GAN(Generative Adversarial Network)全名叫做对抗生成网络或者生成对抗网络。GAN这一概念是由Ian Goodfellow于2014年提出,并迅速成为了非常火热的研究话题。目前,GAN的变种更是有上千种,2019年计算机界的诺贝尔奖“图灵奖”得主,深度学习先驱之一的Yann LeCun也曾说:"GAN及其变种是数十年来机器学习领域最有趣的想法。
生成对抗网络(GAN)是一种由生成网络和判别网络组成的深度神经网络架构。通过在生成和判别之间的多次循环,两个网络相互对抗,继而两者性能逐步提升。 生成网络 生成网络(Generator Network)借助现有的数据来生成新数据,比如使用从随机产生的一组数字向量(称为潜在空间 latent space)中生成数据(图像、音频等)。所以在构建的...
GAN(Generative Adversarial Network)模型作为传统深度学习时代中图像生成领域的“王者”,其应用价值的大头(图像生成)与AIGC时代中AI绘画领域的核心模型Stable Diffusion高度重合,并且Stable Diffusion的效果更加强大,在AIGC时代GAN模型终于有了新的接棒者。 但是GAN模型在AIGC时代真的如很多自媒体所说的一无是处?凉了?被...
GAN 的全称是 Generative Adversarial Network,中文是生成对抗网络。 一言以蔽之,GAN 包含了两个神经网络,生成器(generator)和辨别器(discriminator),两者互相博弈不断变强,即生成器产出的东西越来越逼真,辨别器的识别能力越来越牛逼。 2 造假和鉴定 生成器和辨别器之间的关系很像造...
为了解决达到准确重建而不损失特征性质,作者提出了内省对抗式网络(Introspective Adversarial Network),该网络将GAN和VAE创新地结合在一起。通过使用基于权重分享的扩张卷积(weight-shareddilated convolutions)计算块,该模型可以有效的获得远程依赖(long-rangedependencies),并且通过正交正则化(Orthogonal Regularization...
p_x, pg, label='generated data') plt.title('1D Generative Adversarial Network') plt.xlabel('Data values') plt.ylabel('Probability density') plt.legend() plt.show()def main(args): model = GAN(#定义真实数据的分布DataDistribution(),#创造一些噪音点,用来传入G函数GeneratorDistribution(range=8...
for i in range(n_mlp): layers.append(EqualLinear(code_dim, code_dim)) layers.append(nn.LeakyReLU(0.2)) ## mapping network f,用于从噪声向量Z生成Latent向量W(即风格向量) self.style = nn.Sequential(*layers) def forward( self, inp...