计算模拟:在多孔P 掺杂g-C3N4纳米薄片的导带下方出现了空的能隙间质,其可以容纳从价带激发上来的光生电子,大大促进了g-C3N4对于能量低于带隙值的光子的吸收,导致了乌尔巴赫带尾的出现。 计算结果:P掺杂使得g-C3N4的本征带隙由2. 98降为2. 66 eV,在光催化产氢过程中,能隙间质的存在使得P 掺杂g-C3N4纳米薄...
相比于其他的光催化剂,它的优点突出:能够吸收可见光、热稳定性和化学稳定性良好,并且无毒、来源丰富、制备成型工艺也简单。 石墨相氮化碳g-C3N4的结构式 石墨相氮化碳g-C3N4独特的结构决定了它在光催化领域具有比较广的应用。目前,g-C3N4主要应用于光分解水制氢,光催化还原减少碳氢化合物燃烧时CO2排放量,光催化...
g-C 3N 4不仅继承了传统催化剂在光催化过程中化学稳定性、成本低等优点,而且突破了传统催化剂在光吸收范围的局限,在可见光下显示出高效光催化反应的潜力。尽管由于快速的光诱导载流子重组和可见光吸收不足,g-C 3N 4的光催化活性受到固有的限制,但各种增强策略,如复杂的纳米结构设计,创新的掺杂方法,战略热侵蚀结构...
由于其合成简单、成本低、毒性小、电子结构独特、稳定性好等优点,g-C 3N 4常作为光催化剂,用于光解水产氢、降解污染物、CO 2还原和可见光下有机合成等。然而,g-C 3N 4比表面积较小,光生载流子的复合率较高等缺点,在一定程度上限制了其应用。常见的g-C 3N 4的制备方法包括水热法、气相沉积法、热...
1. 光催化分解水产氢 g-C3N4作为对可见光响应的光催化剂,可将太阳能直接转化为氢能。理论上,由于g-C3N4的导带(CB)为–1.1eV,价带(VB)为+1.6eV(相对于标准氢电极),跨立于光催化分解水产生氢气和氧气的氧化还原电位的两端,满足可见光全解水析氢析氧的要求。然而,纯 g-C3N4的光催化产氢活性并不高。因此研究...
延长光生电子-空穴生命周期、提高催化剂对可见光的响应能力等多个方面提升 g-C3N4 光催化剂的光降解...
g-C3N4凭借其来源方便、能带结构适中、高稳定性与低毒性,适用于电池、储能、电催化、生物医学等多个领域。尤其在光催化中,其光捕获能力和氧化还原能力显著,为环境修复、光降解等提供了有力工具。然而,其易团聚、光利用率和电导率的问题限制了性能,通过官能团改性、掺杂等手段进行改性,有望提升其性能...
gC3N4作为一种性能优异的光催化剂,在光解水产氢、有机物降解、二氧化碳还原等方面展现出巨大的应用潜力。gC3N4还具有原料来源广泛、制备工艺简单、成本低廉等优点,使得其在光催化领域的应用前景十分广阔。 因此,对gC3N4光催化性能的研究不仅有助于推动光催化技术的发展,也为解决当前的环境和能源问题提供了新的思路和...