\int_x^{x^2}\frac{dt}{t^2+3}=-\int_a ^{x} \frac{dt}{t^2+3}+\int_a^{x^2}\frac{dt}{t^2+3}\\Differentiate and apply first fundamental theorem of calculus: \int_x^{x^2}\frac{dt}{t^2+3}=-\frac{d}{dx}\int_a ^{x} \frac{dt}{t^2+3}+\frac{d}{dx}\int_...
calculus n.[U] 微积分学,结石 fundamental adj. 1. 基本的, 基础的,构成基础的,根本的 2.作为起点的,基本的 3.十分重要的,主要的,首要的 4.[~ (to sth) ]根本的,必要的 n . 基本规则,基本原则,基 theorem n.【术语】(尤指数学)定理 konigs'theorem 【计】 科尼希定理 D calculus 【计】...
The fundamental theorem of calculus relates ___. A. derivatives and integrals B. limits and derivatives C. sums and integrals D. products and derivatives 相关知识点: 试题来源: 解析 A。微积分基本定理将导数和积分联系起来。选项 B“limits and derivatives”错误,极限和导数不是基本定理联系的内容。选...
James Stewart《微积分》笔记·5.3 The Fundamental Theorem of Calculus(微积分基本定理) JackLin Lūcem sequor. 9 人赞同了该文章 微积分基本定理 设f 在[a,b] 上连续. 1.(FTC1)若 g(x)=∫axf(t) dt( a≤x≤b )则 g′(x)=f(x) . ...
fundamentaltheoremofcalculus 微积分基本定理() 也可见: fundamental theorem— 基本定理 ▾ 外部资源(未审查的) Thetheoremthatthe Talmud was the latest developmentoftraditional science has been demonstrated by this discussionofthemeaning and the use of the word itself. ...
A simple but rigorous proof of the Fundamental Theorem of Calculus is given\nin geometric calculus, after the basis for this theory in geometric algebra has\nbeen explained. Various classical examples of this theorem, such as the Green's\nand Stokes' theorem are discussed, as well as the new...
Fundamental Theorem of Calculus 微积分基本定理 5.4FundamentalTheoremofCalculus MorroRock,California PhotobyVickieKelly,1998GregKelly,HanfordHighSchool,Richland,Washington Hereismyfavoritecalculustextbookquoteofalltime,fromCALCULUSbyRossL.FinneyandGeorgeB.Thomas,Jr.,©1990.Ifyouwerebeingsenttoadesertislandand...
The Fundamental Theorem of Calculus,Part 1 微积分基本定理 第1部分 就是上面的简单总结 The Fundamental Theorem of Calculus,Part 2 微积分基本定理 第2部分 这个也比较好理解,就像 中间部分 等于 2个部分的差 类似线段AB = 射线 AO - 射线 BO一样 ...
5.4 Fundamental Theorem of CalculusMorro Rock, CaliforniaHere is my favorite calculus textbook quote of all time, from CALCULUS by Ross L. Finne..
The fundamental theorem(s) of calculus relate derivatives and integrals with one another. These relationships are both important theoretical achievements and pactical tools for computation. While some authors regard these relationships as a single theore