在Chat 模型中的 function calling 功能中,`functions` 参数的作用是定义模型可以调用的函数信息。通过 `functions` 参数,LLM的Chat 模型可以根据上下文智能选择并调用适当的函数,来完成特定的任务或查询。这种机制在增强模型的交互性和功能性方面非常重要,使得模型能够执行更加复杂和多样化的操作。这些信息包括: ...
Function Calling,这个让大语言模型(LLM) 如虎添翼的利器,正逐渐成为人工智能领域的一大热点。它究竟是什么?如何运作?又能为我们带来哪些改变?让我们一起深入探索 Function Calling 的奥秘,揭开其背后的“魔法”,并展望其无限的未来! 1. 大语言模型的困境:有“脑”却无“手”,空有知识却无法行动 大语言模型,例如...
该Prompt告知了LLM:如果需要使用function-calling能力,那么就从tools(tools是预定义的functions)中选取一个最匹配的函数;如果不需要,就用自然语言与用户交互,此时与正常的对话流程无异。输出的格式固定为json,方便解析。 由此,我们受到启发:只要LLM基座够强(能够严格遵循Prompt响应诉求),即使LLM本身不支持function-calling...
在OpenAI 发布Function calling之前,我们可能会议文本输入的方式,在Prompt中要求LLM格式化输出,或者通过LangChain框架提供的Parsers相关的抽象。现在,OpenAI 提供了Function calling用于将LLM的输出格式化成Function calling所需要的参数。 Function calling介绍 简单的说,Function calling就是基于(自定义)函数调用所需要的参数,...
工具(Function Calling) “工具(Tool)”或“功能调用(Function Calling)”允许大型语言模型(LLM)在必要时调用一个或多个可用的工具,这些工具通常由开发者定义。工具可以是任何东西:网页搜索、对外部 API 的调用,或特定代码的执行等。LLM 本身不能实际调用工具;相反,它们会在响应中表达调用特定工具的意图(而不是以纯...
比如,谷歌的 Gemini API 最近也开始支持函数调用, Anthropic 也在将其整合到 Claude 中。函数调用(译者注:Function Calling,允许模型通过调用特定的函数来执行某些复杂任务。)已经成为大语言模型(LLMs)的关键功能之一,能够显著增强大模型应用能力。因此,学习这项技术是极其有意义的。
1、什么是Function Calling? 在生成式AI的上下文中,函数调用通常指的是LLM在生成响应时,能够识别并执行特定的函数或API调用,以获取额外的信息或执行特定的任务。 函数调用增强了LLM的扩展性和实用性,使其能够跨越语言模型的边界,与数据库、Web服务等外部系统无缝交互,从而提供更加全面和实时的信息。
在大型语言模型(LLM)的发展过程中,"function calling"成为提升模型实际应用能力的重要研究方向之一。随着AI技术的进步,许多应用场景要求模型能够自动调用不同的API来执行任务。这不仅包括正确选择合适的API,还需要生成符合规范的函数调用,从而实现复杂的任务自动化。因此,理解如何生成高质量的function calling微调数据...
为了简化和统一与各种大型语言模型(LLM)提供商的工具调用API的交互,LangChain正在针对 AIMessage 引入一个名为 tool_calls 的新属性。本系列合集,点击链接查看Tool Calling with LangChainPython:聊天模型列表显示工具调用能力状态工具调用解释新的工具调用接口工具调用代理展示如何创建使用标准化工具调用接口的代理Lang...
构建Agent的重要的一步是Function calling(函数调用),本文不使用任何langchain等框架或者coze等平台,从0开始构建一个可以调用function的Agent。 Function calling其实就是提供了一种方式,允许LLM与外部系统进行交互,还有如何进行交互。 1、买火车票 我让Kimi帮买张火车票,它会直接拒绝,甚至换ChatGPT、文心、通义等其他...