auto_wrap_policy=t5_auto_wrap_policy, mixed_precision=bfSixteen) 损失缩放 解决FP16 下溢问题的另一个方法是损失缩放(Loss Scale)。刚才提到,训练到了后期,梯度(特别是激活函数平滑段的梯度)会特别小,FP16 表示容易产生下溢现象。为了解决梯度过小的问题,需要对损失进行缩放,由于链式法则的存在,损失的缩放也会...
--logging_steps 1 \ --fsdp "full_shard auto_wrap offload" \ --fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \ --tf32 True slow: + offload 显存在OOM边缘横跳:40426MiB / 40537MiB --num_train_epochs 3 \ --bf16 True \ --per_device_train_batch_size 1 \ --per_device_eval...
world_size =int(os.environ['WORLD_SIZE'])# Set dataset and dataloader heret5_auto_wrap_policy = functools.partial( transformer_auto_wrap_policy, transformer_layer_cls={ T5Block, }, ) sharding_strategy: ShardingStrategy = ShardingStrategy.SHARD_GRAD_OP#for Zero2 and FULL_SHARD for Zero3torch...
cpu_offload=None,auto_wrap_policy=None,backward_prefetch=BackwardPrefetch.BACKWARD_PRE,mixed_precision=None,ignored_modules=None,param_init_fn=None,device_id=None,sync_module_states=False,forward_prefetch=False,limit_all_gathers=True,use_orig_params=False,ignored_states=None,device_mesh=None)...
分片策略: [1] FULL_SHARD, [2] SHARD_GRAD_OPMin Num Params: FSDP 默认自动包装的最小参数量。Offload Params: 是否将参数和梯度卸载到 CPU。如果想要对更多的控制参数进行配置,用户可以利用 FullyShardedDataParallelPlugin ,其可以指定 auto_wrap_policy 、 backward_prefetch 以及 ignored_modules 。创建该类...
计算环境:LOCAL_MACHINE调试:false分布式类型:FSDP downcast_bf16:'否' fsdp_config:fsdp_auto_wrap_policy:TRANSFORMER_BASED_WRAP fsdp_backward_prefetch:BACKWARD_PRE fsdp_cpu_ram_efficient_loading:true fsdp_forward_prefetch:false fsdp_offload_params:true fsdp_sharding_strategy:FULL_SHARD fsdp_state...
The bug occurred when I was usingtransformers.Trainerto train aLlamaForSequenceClassificationmodel with the FSDP arguments--fsdp "full_shard auto_wrap --fsdp_transformer_layer_cls_to_wrap "LlamaDecoderLayer". Specifically, when I used theTrainer.save_model()function to save the training results to...
在数据集和数据加载器设置之后,通过functools.partial函数部分应用了transformer_auto_wrap_policy,并指定T5Block为要自动包装的变压器层。这一步的目的是定义一个自动包装策略,用于后续的模型分片和并行处理。 接下来,定义了sharding_strategy变量,并将其设为ShardingStrategy.SHARD_GRAD_OP。这表示使用 Zero2 分片策略,...
Sharding Strategy: [1] FULL_SHARD, [2] SHARD_GRAD_OP Min Num Params: FSDP's minimum number of parameters for Default Auto Wrapping. Offload Params: Decides Whether to offload parameters and gradients to CPU. For more control, users can leverage theFullyShardedDataParallelPluginwherein they can...
world_size =int(os.environ['WORLD_SIZE'])# Set dataset and dataloader heret5_auto_wrap_policy = functools.partial( transformer_auto_wrap_policy, transformer_layer_cls={ T5Block, }, ) sharding_strategy: ShardingStrategy = ShardingStrategy.SHARD_GRAD_OP#for Zero2 and FULL_SHARD for Zero3torch...