基于你的问题和提供的提示,以下是对scipy.optimize.least_squares函数的详细解答,包含导入模块、函数的基本使用以及一个示例代码片段。 1. 导入scipy.optimize模块 在Python中,scipy是一个广泛使用的科学计算库,它提供了许多数学算法和函数。scipy.optimize模块专门用于优化问题,包括求解方程、最小化函数等。 要导入scipy...
import numpy as np from scipy.optimize import least_squares # 示例代码:Bundle Adjustment优化 def bundle_adjustment(points_3d, points_2d, camera_params): def error_function(params): # 计算重投影误差 pass initial_guess = np.concatenate([camera_params, points_3d.flatten()]) result = least_squar...
In [1]: import numpy as np In [2]: from scipy import optimize as opt In [3]: true_p = np.array([3.0, -4.0, 2.0, -6.]) In [4]: x = np.linspace(0, 1, 9) In [5]: fit = lambda x, a, b, c, d: a*x**3 + b*x**2 + c*x + d In [6]: y = fit(x, ...
import numpy as np from scipy.optimize import least_squares # 示例代码:Bundle Adjustment优化 def bundle_adjustment(points_3d, points_2d, camera_params): def error_function(params): # 计算重投影误差 pass initial_guess = np.concatenate([camera_params, points_3d.flatten()]) result = least_squar...
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] Maloney, L.T. Evaluation of linear models of surface spectral reflectance with small numbers of parameters. J. Opt. Soc. Am. A 1986, 3, 1673–1683. [Google...