为了使用OpenAI的API,你需要一个有效的API密钥。你可以从OpenAI的官方网站获取这个密钥。 在langchain中,你可以通过以下方式设置这个密钥: python import os os.environ["OPENAI_API_KEY"] = "你的OpenAI API密钥" 注意:在实际代码中,请确保将"你的OpenAI API密钥"替换为你从OpenAI获取的实际密钥。同时,为了避免...
fromlangchain_openaiimportChatOpenAIllm=ChatOpenAI(api_key="ollama",model="llama3:8b-instruct-fp16",base_url="http://localhost:11434/v1", ) Description Using Model from Ollama in ChatOpenAI doesnt invoke the tools with bind_tools
步骤1:创建上下文压缩检索器 from langchain.retrievers import ContextualCompressionRetriever from langchain.retrievers.document_compressors import LLMChainExtractor # 包装我们的向量存储 llm = OpenAI(temperature=0) compressor = LLMChainExtractor.from_llm(llm) compression_retriever = ContextualCompressionRetriever(...
from langchain.chains import create_sql_query_chain from langchain_openai import ChatOpenAI llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0) from langchain_community.tools.sql_database.tool import QuerySQLDataBaseTool # 执行查询动作 execute_query = QuerySQLDataBaseTool(db=db) # 获取sql...
from fastapi import FastAPI, Depends, Request, Response from typing import Any, Dict, List, Generator import asyncio from langchain.llms import OpenAI from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain.schema import LLMResult, HumanMessage, SystemMessage from ...
接下来我们需要先加载一下在之前的博客 让Langchain与你的数据对话(二):向量存储 与嵌入中我们在本地创建的关于吴恩达老师的机器学习课程cs229课程讲义(pdf)的向量数据库: from langchain.vectorstores import Chroma from langchain.embeddings.openai import OpenAIEmbeddings persist_directory = 'docs/chroma/' embed...
from langchain.embeddings.openai import OpenAIEmbeddings embedding = OpenAIEmbeddings(openai_api_key=api_key) db = Chroma(persist_directory="embeddings\\",embedding_function=embedding) The embedding_function parameter accepts OpenAI embedding object that serves the purpose. ...
Toptal enables start-ups, businesses, and organizations to hire freelancers from a growing network of top talent in the world. Find quality talent to work full-time, part-time, or hourly who will seamlessly integrate into your team.
langchain_community openai Next, in your stack.yaml file, setbuffer_body: trueunder theenvironment:section. This reads all of the request input into memory, then sends it to the function, so there’s no streaming input, just a streaming output. ...
from langchain.chains.openai_functions.openapi import get_openapi_chain chain = get_openapi_chain("https://www.klarna.com/us/shopping/public/openai/v0/api-docs/") chain("What are some options for a men's large blue button down shirt") Error message when running with pydantic 1 Unable to...