Solve your math problems using our free math solver with step-by-step solutions. Our math solver supports basic math, pre-algebra, algebra, trigonometry, calculus and more.
当x=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}、y=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\s
结果1 结果2 题目\$\frac { \sqrt { 3 } } { \sqrt { 3 } - \sqrt { 2 } } - \frac { \sqrt { 3 } } { \sqrt { 3 } + \sqrt { 2 } }\$ 相关知识点: 试题来源: 解析 【解析】5. _ 结果一 题目 arccot(-(√3)/3)=- 【题目】计算:arccot 答案 【解析】...
May 16, 2015 Before starting, I must say that I believe there has been a little typing mistake and that your function is 4xy348x3y2 ... How do you multiply 14x3y82x5y2 ? https://socratic.org/qu...
5. 已知a=\sqrt{3}-\sqrt{2},b=\frac{1}{\sqrt{3}+\sqrt{2}},那么a与b的关系是···
\sqrt{3};(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})-\frac{2}{\sqrt{2}};(3\sqrt{24}-2\sqrt
结果1 题目12. 计算\frac{3}{\sqrt{3}-2}-\sqrt{2}\cdot (\sqrt{3}\frac{1}{2}-\sqrt{2})的结果为___ 相关知识点: 二次根式 二次根式的运算 二次根式的运算和化简 二次根式的混合运算 试题来源: 解析 -3 √3+√6-8 反馈 收藏
解:(1)原式= \frac { \sqrt {5}+2}{( \sqrt {5}-2)( \sqrt {5}+2)}- \frac {5× \sqrt {5}}{ \sqrt {5}× \sqrt {5}}= \sqrt {5}+2- \sqrt {5}=2;(2) \sqrt {7}- \sqrt {6}< \sqrt {6}- \sqrt {5}.
2\sqrt{2}+3 相关知识点: 二次根式 二次根式的运算 二次根式的运算和化简 二次根式的混合运算 试题来源: 解析 C 原式可化简为: (3√2+4)/(√2)-(3-√3)(3+√3) = 3 + 2√2 - (3^2 - (√3)^2) = 3 + 2√2 - 6 = 2√2 - 3。 因此,答案为 C。
则xy=1,x+y=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}+\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}={{(\sqrt{3}-\sqrt{2})}^{2}}+{{(\sqrt{3}+\sqrt{2})}^{2}}=10,∴\frac{y}{{{x}^{2}}}+\frac{x}{{{y}^{2}}}=\frac{{{y}^{3}}+{{x}^{...