解答:首先,将方程的分式进行通分,得到:$4(2x - 1) - 3(x + 2) = 6(3 - x)$。 展开并化简方程的左侧和右侧,得到:$8x - 4 - 3x - 6 = 18 - 6x$。 接下来,将方程移项并合并同类项,化简得到:$8x - 3x + 6x = 18 + 4 + 6$。 继续合并同类项,得到:$11x = 28$。 再将方...
\frac{8x^{2}y^{-2{x^{-2}y} \cdot \frac{(4xy^{2})^{-1{x^2y} Simplify the expression. \sqrt[3]{-125x^{24}y^{24 Simplify: 6b^2 - 4b + 3b^4 - (7b^3 + b^4 - 4b) Simplify the expression. \frac{(2k)^{2}k^{3{k^{-1}k^{-5(5k^{-2})^{-3} Simplify: \f...
find {y}''y=6x^{3}e^{6x} Suppose that f(t) = Q_0a^t = Q_0(1+r)^t with f(2) = 74.2 and f(12) = 178.2. Find a and r. f(x) = (x - 1)(x - 2) - x^2 + 3x - 3 Find f'(5) + f(5). Given f(5) = 6, f'(5) = -5 , find F'(5) if F(x) ...
解:(1)8x-4x=4 4x=4 4x÷4=4÷4 x=1(2) \frac {2}{3}x÷ \frac {1}{4}=8× \frac {1}{2} \frac {8}{3}x=4 \frac {8}{3}x× \frac {3}{8}=4× \frac {3}{8} x= \frac {3}{2}(3) \frac {1.2}{7.5}= \frac {0.4}{x} 1.2x=7.5×0.4 1.2x=...
Evaluate the integral I = int 0 3 6x/(x + 1)1/2 dx. Evaluate the integral: 3 2 ( 3 x 2 4 ) d x . Evaluate the integral of (y + 1)/(y^3 + 3y^2 - 18y) dy. Evaluate the integral \int_{-\infty}^{\infty} \frac{dz}{z^2+25} Evaluate the integral \...
解析 解: 4(2x-1)=9x-6(x-2) 8x-4=9x-6x+12 5x=16 x=3\frac{1}{5} 本题考查了解简易方程; 首先等式左右同时乘以6得4(2x-1)=9x-6(x-2),化简得8x-4=9x-6x+12,将含有未知数的全部项移到左边,常数移到右边得5x=16,解得x=\frac{16}{5},也就是3\frac{1}{5}。
y=6x−6−2x dydx= d2ydx2= The derivative of a power function There is a set of rules which are used to find the derivatives of different types of functions. One among them is "power rule", which is used to find the derivative of a power function where t...
solve the inequality algebraically. Express the solution in interval notation. {eq}\frac{(x-8)^2}{x^2-36} > 0 {/eq} Inequality: The solution of the inequality is done by solving each part of the inequality separately. If there are more than one pa...
解:方程两边都乘(2x-3),得x-5=4(2x-3),解得x=1.检验:当x=1时,2x-3≠0.∴原方程的根是x=1. 结果二 题目 解方程:. 答案 【答案】x=-1. 【解析】去分母得,去括号得x=6x-3+8,移项合并同类项-5x=5,化系数为1,x=-1,经检验x=-1是原方程的解,故原方程的解为x=-1. 结果三 题目 ...
Answer to: Solve using partial fraction decomposition: \int \frac{ 6x^2+8x-4}{(x-3)(x^2+6x+10)} dx By signing up, you'll get thousands of...