1、FPN结构(以resnet50为例) Fig. 3 shows the building block that constructs our topdown feature maps. With a coarser-resolution feature map, we upsample the spatial resolution by a factor of 2 (using nearest neighbor upsampling for simplicity). The upsampled map is then merged with the cor...
高层筛选特征金字塔网络(HS-FPN):这个组件旨在处理不同白细胞之间的尺度差异问题。它很可能是一个特征金字塔网络(FPN),创建了一个多尺度特征层次结构,允许模型检测不同大小的白细胞。高层特征用于筛选(或权衡)低层特征,然后与高层特征融合,以增强模型表达不同尺度特征的能力。 编码器:编码器负责对骨干网和HS-FPN提取...
该模型由论文提出,旨在优化白细胞检测过程,解决传统方法的局限性。HS-FPN作为核心组件,实现多级特征融合,通过高级特征筛选和信息合并,增强模型对不同大小目标的识别能力。架构分解 骨干网**:作为基础,提取原始图像特征,如ResNet或VGG。HS-FPN**:关键模块,通过多尺度特征融合处理白细胞尺度差异问题。
高层筛选特征金字塔网络(HS-FPN):这个组件旨在处理不同白细胞之间的尺度差异问题。它很可能是一个特征金字塔网络(FPN),创建了一个多尺度特征层次结构,允许模型检测不同大小的白细胞。高层特征用于筛选(或权衡)低层特征,然后与高层特征融合,以增强模型表达不同尺度特征的能力。 编码器:编码器负责对骨干网和HS-FPN提取...
💡💡💡本文独家改进:高层筛选特征金字塔网络(HS-FPN),能够刷选出大小目标,增强模型表达不同尺度特征的能力,助力小目标检测 💡💡💡在BCCD医学数据集实现暴力涨点。 1.MFDS-DETR原理介绍 论文:https://arxiv.org/pdf/2401.00926.pdf 摘要:在标准的医院血液检测中,传统的过程需要医生手动分离白细胞。