它的使用对RPN方法和Fast/Faster RCNN方法都有极大的性能提升。另外,它的训练和测试时间和普通的Faster RCNN方法相差很小。因此,它可以作为图像特征金字塔的一种较好的替代。 论文开源代码 https://github.com/unsky/FPN
代码解读 这里给出一个基于Pytorch的FPN网络的代码,来自这里。 ## ResNet的blockclassBottleneck(nn.Module):expansion=4def__init__(self,in_planes,planes,stride=1):super(Bottleneck,self).__init__()self.conv1=nn.Conv2d(in_planes,planes,kernel_size=1,bias=False)self.bn1=nn.BatchNorm2d(planes)s...
看看加入FPN 的 RPN 网络的有效性,如下表 Table1。网络这些结果都是基于 ResNet-50。评价标准采用 AR,AR 表示 Average Recall,AR 右上角的 100 表示每张图像有 100 个 anchor,AR 的右下角 s,m,l 表示 COCO 数据集中 object 的大小分别是小,中,大。feature 列的大括号 {} 表示每层独立预测。 从(a)(...
FPN在faster_rcnn中实现细节代码说明 代码参考自:https://github.com/DetectionTeamUCAS/FPN_Tensorflow 主要分析fpn多层金字塔结构的输出如何进行预测。 FPN金字塔结构插入在faster_rcnn的特征图获取之后,在rpn结构之前。 具体代码如下所示: 代码结构追溯至FPN部分: train.py(line 46 :build_whole_detection_network函...
FPN嵌在RPN时,RPN输入是 FPN生成不同尺度特征并融合后的特征。即把RPN应用到每一个P层。由于每个P层相对于原始图片具有不同的尺度信息,因此作者将原始RPN中的尺度信息分离,让每个P层只处理单一的尺度信息。 FPN对{32^2、64^2、128^2、256^2、512^2}这五种尺度的anchor,分别对应到{P2、P3、P4、P5、P6}...
本文提出了一种简单、有效的建立特征金字塔的方式。它的使用对RPN方法和Fast/Faster RCNN方法都有极大的性能提升。另外,它的训练和测试时间和普通的Faster RCNN方法相差很小。因此,它可以作为图像特征金字塔的一种较好的替代。 论文开源代码 https:///unsky/FPN...
这个是目标检测常用结构,输入一张图像,经过backbone提取特征,最后输出一张featuremap,以fasterrcnn举例,featuremap直接输入rpn得到proposals,proposals在featuremap上提取proposal feature然后进行box的分类和位置的回归。为了增加多尺度能力,在上面结构上有很多变种,第一个就是下图的特征图像金字塔(Featurized image pyramid )...
Anchor 或 AnchorBoxes 与 RPN [5] 中的 Anchor 相同,都以滑窗为中心并有一个长宽比。尺度与长宽比和 [1] 一样,尺度从 到 ,长宽比分别为 1:2, 1:1, 2:1。 FPN 的每一级,都通过子网络给出相应的有 anchor 的输出。 代码实现 Caffe2(官方实现) - https://github.com/facebookresearch/Detectron/...
Anchor 或 AnchorBoxes 与 RPN [5] 中的 Anchor 相同,都以滑窗为中心并有一个长宽比。尺度与长宽比和 [1] 一样,尺度从到,长宽比分别为 1:2, 1:1, 2:1。 FPN 的每一级,都通过子网络给出相应的有 anchor 的输出。 代码实现 Caffe2(官方实现) -https://github.com/facebookresearch/Detectron/tree...
Faster RCNN 从功能模块来看,可大致分为特征提取,RPN,RoI Pooling,RCNN四个模块,这里代码上选择了 ResNet50 + FPN 作为主干网络: model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=False) 1.1 特征提取 这里不用多说,就是选个合适的 Backbone 罢了,不过为了提升特征的判决性,一般会采用...