FPN在faster_rcnn中实现细节代码说明 代码参考自:https://github.com/DetectionTeamUCAS/FPN_Tensorflow 主要分析fpn多层金字塔结构的输出如何进行预测。 FPN金字塔结构插入在faster_rcnn的特征图获取之后,在rpn结构之前。 具体代码如下所示: 代码结构追溯至FPN部分: train.py(line 46 :build_whole_detection_network函...
它的使用对RPN方法和Fast/Faster RCNN方法都有极大的性能提升。另外,它的训练和测试时间和普通的Faster RCNN方法相差很小。因此,它可以作为图像特征金字塔的一种较好的替代。 论文开源代码 https://github.com/unsky/FPN
因为RPN的输出头有多个尺度,而FPN的每一层的Feature Map都有其自己的感受野,所以这里是为FPN的每一个输出都固定一个尺度,每个尺度有3个不同的比例。此外RPN还对P5又进行了一次池化降采样,得到了P6。最终,结合了FPN的RPN会在P2,P3,P4,P5,P6后面接RPN的输出头分支,它们对应的Anchor的面积一次是32^2,64^2,128...
Resnet-50,主干网,主要是特征提取 FPN,主要用于构建特征金字塔给RPN提供输入特征图 RPN,主要是产生region proposals ROI,主要是检测object区域,各个区域的labels以及各个区域的scores Transform 请看torchvision Faster-RCNN ResNet-50 FPN代码解析(图片转换和坐标) Resnet-50 这里就不多做介绍,这里用的标准的Resnet-...
Faster RCNN 从功能模块来看,可大致分为特征提取,RPN,RoI Pooling,RCNN四个模块,这里代码上选择了 ResNet50 + FPN 作为主干网络: model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=False) 1.1 特征提取 这里不用多说,就是选个合适的 Backbone 罢了,不过为了提升特征的判决性,一般会采用...
本文提出了一种简单、有效的建立特征金字塔的方式。它的使用对RPN方法和Fast/Faster RCNN方法都有极大的性能提升。另外,它的训练和测试时间和普通的Faster RCNN方法相差很小。因此,它可以作为图像特征金字塔的一种较好的替代。 论文开源代码 https://github.com/unsky/FPN...
Anchor 或 AnchorBoxes 与 RPN [5] 中的 Anchor 相同,都以滑窗为中心并有一个长宽比。尺度与长宽比和 [1] 一样,尺度从 到 ,长宽比分别为 1:2, 1:1, 2:1。 FPN 的每一级,都通过子网络给出相应的有 anchor 的输出。 代码实现 Caffe2(官方实现) - https://github.com/facebookresearch/Detectron/...
看看加入FPN 的 RPN 网络的有效性,如下表 Table1。网络这些结果都是基于 ResNet-50。评价标准采用 AR,AR 表示 Average Recall,AR 右上角的 100 表示每张图像有 100 个 anchor,AR 的右下角 s,m,l 表示 COCO 数据集中 object 的大小分别是小,中,大。feature 列的大括号 {} 表示每层独立预测。
Anchor 或 AnchorBoxes 与 RPN [5] 中的 Anchor 相同,都以滑窗为中心并有一个长宽比。尺度与长宽比和 [1] 一样,尺度从到,长宽比分别为 1:2, 1:1, 2:1。 FPN 的每一级,都通过子网络给出相应的有 anchor 的输出。 代码实现 Caffe2(官方实现) -https://github.com/facebookresearch/Detectron/tree...
Anchor 或 AnchorBoxes 与 RPN [5] 中的 Anchor 相同,都以滑窗为中心并有一个长宽比。尺度与长宽比和 [1] 一样,尺度从到,长宽比分别为 1:2, 1:1, 2:1。 FPN 的每一级,都通过子网络给出相应的有 anchor 的输出。 代码实现 Caffe2(官方实现) - https://github.com/facebookresearch/Detectron/tree...