FPGAs vs. GPUs The choice of hardware significantly influences the efficiency, speed and scalability of deep learning applications. While designing a deep learning system, it is important to weigh operational
using them for machine learning and deep learning became popular. GPUs excel at parallel processing, performing a very large number of arithmetic operations in parallel. In other words, they can deliver incredible acceleration in cases where the...
只不过一般情况下也需要FPGA把采样到的图像数据通过某种线路传给GPU。然后处理结果可能还要传回FPGA,因为可能还是需要FPGA去控制执行机构。FPGA当然也能实现神经网络的推理,而且有它的一些优势,只不过现在用FPGA跑神经网络还是稍微麻烦了点,没有GPU那么容易编程。 上面简单讲了一下FPGA在工业上的一个典型应用流程。下面...
但是部署深度学习模型的环境对 GPU 并不友好,比如自动驾驶汽车、工厂、机器人和许多智能城市的配置,在这些环境中,硬件必须能够承受如发热、灰尘、湿度、运动和能耗限制。一些重要的应用如视频监控,要求硬件暴露在对 GPU 有负面影响的环境(例如太阳)中,而GPU 使用的晶体管技术已经逐渐见顶,发热问题在很多情况下已...
浮点计算转向定点计算在神经网络实现的方案中,在GPU(快速)或CPU(慢速)上使用浮点计算方案是最常见的...
for deterministic latency, near real-time option price and trends calculations the ultra-flexible FPGA is becoming the most efficient acceleration processing platform in Fintech. Alternative technologies such as GPU, struggle to deliver the performance, power and usability required to scale as an ...
值得一提的是,我们的设计部署在 Ultra96 FPGA 时(峰值运算性能不及 TX2 GPU 四分之一),获得的精度和吞吐率依然非常接近本届 GPU 组亚冠与季军设计。更详细的对比可参阅表 2 和 3。 图8: 近两年 DAC 低功耗目标检测系统设计挑战赛结果对比(IoU vs. FPS) 表2: 近两届比赛 GPU 前三名设计及在 TX2 上...
值得一提的是,我们的设计部署在 Ultra96 FPGA 时(峰值运算性能不及 TX2 GPU 四分之一),获得的精度和吞吐率依然非常接近本届 GPU 组亚冠与季军设计。更详细的对比可参阅表 2 和 3。 图8: 近两年 DAC 低功耗目标检测系统设计挑战赛结果对比(IoU vs. FPS)...
相对而言,FPGA首先设计资源受到很大的限制,例如GPU如果想多加几个core只要增加芯片面积就行,但FPGA一旦...
kNN can be implemented on various computing platforms such as a conventional multi-core CPU server or a heterogeneous computing system using accelerators like GPU or FPGA. Among these platforms, an FPGA-based heterogeneous system is becoming increasingly attractive for a spectrum of applications thanks...