https://github.com/akcgjc007/ES203-COA-CNN 具体的实现过程: 代码介绍: https://www.youtube.com/watch?v=3J2X-j0z2M8 结果: MNIST_CNN_HDL https://github.com/makifozkanoglu/MNIST_CNN_HDL https://github.com/flystandard1/CNN_hardware_ECE1718_UofT 通过硬件加速提升 CNN-mnist 的性能 文件夹...
表示定点数。 也就是说:我们必须将转定点后的结果除以2N或者是将其移位N个位置才能得到实数值。 如果我们对所有可能的输入图像进行排序并关注潜在的最小值和最大值,我们可以获得非常大的缩减系数,这样会在层与层之间降低计算精度。这样将需要很大的位宽和中间结果来表示定点结果。为了避免这种情况,我...
用来存储图像和LeNet-5 卷积神经网络计算的中间结果;软件先从 DDR3 中读取 28x28 大小的图像,然后...
近年来,卷积神经网络(CNN)已被广泛应用于计算机视觉领域。FPGA由于其高性能和可重构性,已被充分开发为较有前途的CNN硬件加速器。然而,先前基于传统卷积算法的FPGA实现方案往往受到FPGA计算能力的限制,例如DSP的数量。 首先,为了解决这一问题,本文研究的论文《Evaluating Fast Algorithm for Convolutional Neural Networks ...
一起学习用Verilog在FPGA上实现CNN---(二)卷积层设计已经完成卷积层的设计,下面我们继续激活层的代码实现 2.1 HyperBolicTangent16 2.1.1 设计输入 创建HyperBolicTangent16文件,操作如图: 输入文件名: 确认创建: 双击打开,输入如下代码: module HyperBolicTangent16 (x,reset,clk,OutputFinal,Finished); parameter...
首先,我们先来了解一下CNN中的卷积运算的规则,CNN中的卷积运算如图1所示,代码1表示其伪代码。 图1 代码1 几乎所有的基于FPGA的加速方案,都如图2显示的那样,FPGA上的CNN加速器设计主要由处理元件(PE),片上缓冲器,外部存储器和片上/片外互连几个组件组成。其中PE是卷积的基本计算单元。用于处理的所有数据都存储在...
在这个项目中,展示了 Temporal-Shift-Module ( https://hanlab.mit.edu/projects/tsm/)在FPGA上解决视频理解问题的实用性和性能。 TSM 是一种网络结构,可以通过 2D CNN 有效学习时间关系。在较高级别上,这是通过一次对单个帧(在线 TSM)或多个帧(离线 TSM)执行推理并在这些张量流经网络时在这些张量之间转移激...
在扁平架构设计的基础上,结合混合多精度的量化以及更多逻辑单元的FPGA甚至多块FPGA级联,作者提出一种自动化的工具框架可以将完整的CNN网络映射到FPGA当中。该框架首先使用自研的算法对预训练好的CNN模型进行多种精度下的定点化和偏移搜索,由此产生出量化后并能满足精度要求的优化后模...
使用C 语言的OpenCL 2a并行编程扩展来补充基于 FPGA 的 CNN 加速应用程序的开发。适用于卷积神经网络的 FPGA 器件的一个示例是英特尔可编程解决方案集团 (PSG)的Arria 10系列器件,其正式名称为Altera。 为了帮助开发人员开展基于 FPGA 的 CNN 加速项目,英特尔 PSG 提供了 CNN 参考设计。这使用 OpenCL 内核来实现...
Design of an action recognition system based on SoC FPGA and CNN model Chen Xudong1,Zhou Yuqi2,Li Mengjie1,Chen Zhangjin1,3 0 引言 基于视觉的动作识别方法可以分为两大类[1],其一是采用人工设计的特征进行识别的方法,比如基于密集轨迹[2]、基于空时滤波器与图模型[3]、基于关节信息和流形学习的方法...