实验结果表明,在 H100 GPU 平台上训练 GPT-175B 模型时, FP8-LM 混合精度训练框架不仅减少了 42% 的实际内存占用,而且运行速度比广泛采用的 BF16 框架(即 Megatron-LM)快 64%,比 Nvidia Transformer Engine 快 17%。而且在预训练和多个下游任务上,使用 FP8-LM 训练框架可以得到目前标准的 BF16 混合精...
在使用 4 张 H100 训练 Llama-2-13B 模型时,COAT 将每个 GPU 的内存占用从 BF16 的 76.1GB 减少到 49.1GB,实现了 1.54 倍的内存缩减。同时,COAT 将训练速度从 BF16 的每秒 2345 个 token 提升至每秒 5295 个 token,达到 1.43 倍的加速。在几乎所有的训练场景下,COAT 都能够使 Batch Size 翻倍...
图9对上述关键点进行了总结,并通过三类测试情况进行了对比:绿线代表仅使用BF16进行训练,橘线表示在BF16训练的基础上结合了Transformer Engine(即同时启用了FlashAttention并使用了Transformer Engine内置的fused kernel),而蓝线则代表FP8训练结合Transformer Engine。绿线结果显示,仅采用BF16进行训练时,模型在单GPU卡...
一、背景介绍业界广泛采用 FP16、BF16 混合精度(AMP)进行模型训练。AMP 能在下游任务不掉点的前提下提升训练效率、减少显存等资源占用,如今也常用于大模型预训练、微调等任务。 Pytorch 1.6 版本后原生支持 FP1…
实验结果表明,在 H100 GPU 平台上训练 GPT-175B 模型时, FP8-LM 混合精度训练框架不仅减少了 42% 的实际内存占用,而且运行速度比广泛采用的 BF16 框架(即 Megatron-LM)快 64%,比 Nvidia Transformer Engine 快 17%。而且在预训练和多个下游任务上,使用 FP8-LM 训练框架可以得到目前标准的 BF16 混合精度框架...
实验结果表明,在 H100 GPU 平台上训练 GPT-175B 模型时, FP8-LM 混合精度训练框架不仅减少了 42% 的实际内存占用,而且运行速度比广泛采用的 BF16 框架(即 Megatron-LM)快 64%,比 Nvidia Transformer Engine 快 17%。而且在预训练和多个下游任务上,使用 FP8-LM 训练框架可以得到目前标准的 BF16 混合精度框架...
微软经过测试,与广泛采用的 BF16 混合精度方法相比,内存占用减少 27% 至 42%,权重梯度通信开销显著降低 63% 至 65%。运行速度比广泛采用的 BF16 框架(例如 Megatron-LM)快了 64%,比 Nvidia Transformer Engine 的速度快了 17%。在训练 GPT-175B 模型时,混合 FP8 精度框架在 H100 GPU 平台上节省 21...
实验结果表明,在 H100 GPU 平台上训练 GPT-175B 模型时, FP8-LM 混合精度训练框架不仅减少了 42% 的实际内存占用,而且运行速度比广泛采用的 BF16 框架(即 Megatron-LM)快 64%,比 Nvidia Transformer Engine 快 17%。而且在预训练和多个下游任务上,使用 FP8-LM 训练框架可以得到目前标准的 BF16 混合精度框架...
Pytorch 1.6 版本后原生支持 FP16、BF16 精度的 AMP 训练(torch.amp),过往 AMP 功能由 NVIDIA APEX 库实现。 NVIDIA GPU 自 Hopper 架构起支持 FP8 精度的 Tensor Core 计算,相比于 FP16/BF16 精度,FP8 具有如下优势: 更强的计算性能 对比A100 BF16 精度训练,H100 FP8 训练速度提升 2-3x。
实验结果表明,在 H100 GPU 平台上训练 GPT-175B 模型时, FP8-LM 混合精度训练框架不仅减少了 42% 的实际内存占用,而且运行速度比广泛采用的 BF16 框架(即 Megatron-LM)快 64%,比 Nvidia Transformer Engine 快 17%。而且在预训练和多个下游任务上,使用 FP8-LM 训练框架可以得到目前标准的 BF16 混合精度框架...