频繁模式增长(FP-growth)是一种不产生候选频繁项集的算法,它采用分治策略(Divide and Conquer),在经过第一遍扫描之后,把代表频繁项集的数据库压缩进一棵频繁模式树(FP-tree),同时依然保留其中的关联信息;然后将FP-tree分化成一些条件库,每个库和一个长度为1的频集相关,再对这些条件库分别进行挖掘(降低了I/O开...
Fpgrowth算法又叫fp tree,通俗来讲是计算特征之间关联程度的,Fp树是其核心 FP树(Frequent Pattern Tree)是一种用于高效挖掘频繁项集的数据结构。它通过将事务数据集转换为一棵树形结构来实现,其中每个节点表示一个项,每个路径表示一个事务。 如下图,事物就是列,项就是行数据,更通俗的理解就是事物大概对应的就...
Apriori算法基本思想 如果一个集合是频繁的,那么在同一个最小sup值下,它的子集也是频繁的。算法的核心思想是:首先找到所有的1项代表集C1,根据sup过滤得到频繁集合F1,从F1中得到代表集C2,C2的自己如果有不在F1中的,就删掉【这个过程称为剪枝】,然后遍历数据集,当C2中的数据在原始数据集中是频繁的时候,得到频繁集...
通过这种方式,FP-Growth算法不仅大大减少了数据挖掘所需的时间和资源,还在频繁项集挖掘中设置了新的效率标准。 三、优缺点比较 FP-Growth算法在数据挖掘中有着广泛的应用,特别是在频繁项集和关联规则挖掘方面。然而,像所有算法一样,FP-Growth也有其优点和缺点。本节将详细探讨这些方面。 优点 1. 效率 效率是FP-G...
FP-growth 算法只需要对数据集遍历两次,所以速度更快。 FP树将集合按照支持度降序排序,不同路径如果有相同前缀路径共用存储空间,使得数据得到了压缩。 不需要生成候选集。 比Apriori更快。 缺点: FP-Tree第二次遍历会存储很多中间过程的值,会占用很多内存。 构建FP-Tree是比较昂贵的。 适用数据类型:标称型数据(...
FP-growth算法是基于Apriori原理的,通过将数据集存储在FP(Frequent Pattern)树上发现频繁项集。 FP-growth算法只需要对数据库进行两次扫描,而Apriori算法在求每个潜在的频繁项集时都需要扫描一次数据集,所以说FP-growth算法是高效的。 FP算法发现频繁项集的过程是: ...
FP-growth算法通过构建FP-tree来压缩事务数据库中的信息,从而更加有效地产生频繁项集。FP-tree其实是一棵前缀树,按支持度降序排列,支持度越高的频繁项离根节点越近,从而使得更多的频繁项可以共享前缀。 图2 事务型数据库 图2表示用于购物篮分析的事务型数据库。其中,a,b,...,p分别表示客户购买的物品。首先,对...
FP Growth 算法 Apriori 算法需要多次扫描数据,I/O是很大的瓶颈。为了解决这个问题,FP Growth 算法采用了一些技巧,无论多少数据,只需要扫描两次数据集即可。 FP Tree数据结构 为了减少 I/O 次数,FP Tree 算法引入了一些数据结构来临时存储数据。这个数据结构包括三部分,如下图所示:...
fp-growth算法公式 fp-growth算法公式 FP-growth算法是一种用于频繁项集挖掘的数据挖掘算法。它通过构建一种称为FP树的数据结构来高效地发现频繁项集。本文将介绍FP-growth算法的原理和步骤,并解释如何利用该算法进行频繁项集挖掘。一、FP-growth算法原理 FP-growth算法的核心思想是利用数据压缩和递归技术来高效地挖掘...
FP-growth算法(FP, Frequent Pattern) FP-growth算法只需要对数据库进行两次扫描。而Apriori算法对于每个潜在的频繁项集都会扫描数据集判定给定的模式是否频繁,因此FP-growth算法要比Apriori算法快。 FP-growth算法只需要扫描两次数据集,第一遍对所有数据元素出现次数进行计数,第二遍只需考虑那些频繁的元素。发现频繁项...