D'Alembert和其他数学家也有怀疑。Fourier(1807年)在他对热传导方程的研究中改变了这种观点,他的执着信念和卓越的工作最终导致了其他数学家完全证明了一般函数都可以表示成Fourier级数。 内容来源: <<Fourier Analysis: An Introduction>> E.M. Stein & R. Shakarchi ...
Fourier Analysis的创作者· ··· 伊莱亚斯 M. 斯坦恩作者 Rami Shakarchi作者 作者简介· ··· Stein在国际上享有盛誉,现任美国普林斯顿大学数学系教授。 他是当代分析,特别是调和分析和分析领域领袖人物之一。古典调和分析最困难问题之一是推广到多维。他是多维欧氏调和分析的创造者之一,为此他发展了许多先进工具...
Fourier分析导论--第2章--Fourier级数的基本属性(E.M. Stein & R. Shakarchi) Fourier分析导论--第3章--Fourier级数的收敛性(E.M. Stein & R. Shakarchi) Fourier分析导论--第4章--Fourier级数的一些应用(E.M. Stein & R. Shakarchi) Fourier分析导论--第5章--实数据R上的Fourier变换(E.M. Stein &...
Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory. ...
Stein, Elias M. and Shakarchi, R., Fourier Analysis-An Introduction, Princeton Uni. Press, Princeton, 2003.Stein, E.M., Shakarchi, R., 2003. Fourier Analysis: An Introduction. Number 1 in Princeton Lectures in Analysis.Princeton Univ. Press....
SolutionstosomeexercisesandproblemsfromSteinandShakarchi’sFourierAnalysisThebookbyYKetznelson,”AnintroductionofHar-monicAnalysis”(2ndcorrectededition)isreferredtofrequentlyChapter1:TheGenesisofFourierAnalysis Chapter2:BasicPropertiesofFourierSeries Chapter3:ConvergenceofFourierSeries ...
Butzer, P., Nessel, R.: Fourier Analysis and Approximation. Academic Press, New York (1971) Book Google Scholar Stein, E., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971) MATH Google Scholar Stein, E., Shakarchi, R.: Fourier...
EM Stein,R Shakarchi 摘要: This first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at ...
in R? (Stein & Shakarchi 2003). In quantum mechanics, the momentum and position wave functions are Fourier transform pairs, to within a factor of Planck's constant. With this constant properly taken into account, the inequality above becomes the statement of the Heisenberg uncertainty principle ...
参考文献: Deitmar:A First Course in Harmonic Analysis (Second Edition). Stein and Shakarchi:Fourier Analysis : An Introduction. Stein and Shakarchi:Functional Analysis : Introduction to Further Topics in Analysis. 江泽坚 和孙善利 : 泛函分析 ( 第二版 )....