Fourier Analysis on Groups (Rudin/Fourier) || Fourier Analysis on Ordered Groupsordered groupsgeometric meansfactorization theoremsinvariant subspacesgap theoremdoi:10.1002/9781118165621.ch8RudinWalter
Fourier Analysis on Groups The Fourier transform in classical mathematical analysis is defined in terms of exponential functions exp ( jwx ) that may be thought of as the characters ... W Rudin,L Bers,R Courant,... - 《Physics Today》 被引量: 3363发表: 1962年 Fourier Integrals. (Scientifi...
注:用到的相关结论可以参考Rudin《Real and Complex Analysis》。 Exercise 14 Prove that the periodization of the Fejér kernel \mathcal{F}_N on the real line (Exercise 9) is equal to the Fejér kernel for periodic functions of period 1. In other words, \sum_{n=-\infty}^{\infty}\mathca...
? Rudin, Walter (1987), Real and Complex Analysis (Third ed.), Singapore: McGraw Hill, ISBN?0-07-100276-6. Fourier transform ? Stein, Elias; Shakarchi, Rami (2003), Fourier Analysis: An introduction, Princeton University Press, ISBN?0-691-11384-X. ? Stein, Elias; Weiss, Guido (1971...
Rudin, W.: Fourier Analysis on Groups. Wiley Interscience (1990) 27. Scho¨lkopf, B., Smola, A.: Learning with kernels: support vector machines, regu- larization, optimization, and beyond. MIT Press (2002) 28. Sreekanth, V., Vedaldi, A., Jawahar, C.V., Zisserman, A.: Generalized...
W. Rudin, Fourier Analysis on Groups, Interscience, New York 1962. MATH Google Scholar W. Rudin, Real and Complex Analysis, McGraw-Hill, New York 1966. MATH Google Scholar A. Zygmund, Trigonometric Series II, Cambridge University Press, Cambridge 1959. MATH Google Scholar Download references...
Fourier Analysis on Groups (Rudin/Fourier) || The Basic Theorems of Fourier AnalysisFourier transformFourier‐Stieltjes transformspositive‐definite functionsinversion theoremPlancherel theoremdoi:10.1002/9781118165621.ch1RudinWalter
Fourier analysis on groups ☆ : Rudin, W., New York and London, 1962doi:10.1016/0041-5553(63)90263-5Ye.A. GorinElsevier B.V.Ussr Computational Mathematics & Mathematical Physics
Rudin's book, published in 1962, was the first to give a systematic account of these developments and has come to be regarded as a classic in the field. The basic facts concerning Fourier analysis and the structure of LCA groups are proved in the opening chapters, in order to make the ...
contexts of reproducing kernel theory and of abstract harmonic analysis, using locally compact abelian groups. This paper is expository in the sense that it treats a number of mathematical theorems, their interconnections, their equivalence to one another. On the other hand, the proofs of the many...