作者:William Smith/Javad Hashemi 出版社:McGraw-Hill Science/Engineering/Math 出版年:2009-04-09 页数:1056 定价:$ 286.46 装帧:Hardcover ISBN:9780073529240 豆瓣评分 目前无人评价 评价: 写笔记 写书评 加入购书单 分享到 推荐 + 加入购书单 以下书单推荐· ···(全部) 谁读...
Foundations of Materials Science and Engineering 作者:William Smith/Javad Hashemi 出版社:McGraw-Hill Science/Engineering/Math 出版年:2009-04-09 页数:1056 定价:$ 286.46 装帧:Hardcover ISBN:9780073529240 豆瓣评分 目前无人评价 + 加入购书单
Lecture5PhysicalFoundationsofMaterialsScience Lecture 4 Physical Foundations of Materials Science 知识要点:1、原子结构与键合(1学时)、2、晶体结构(1学时)、3、晶体缺陷(1学时)、4、扩散(1学时)、5、相图与相变(1学时) 教学目标:了解材料科学的物理冶金基础内容的相关专业词汇,包括原子结构与键合,晶体结构,晶体...
Foundations of materials science and engineering 来自 mhprofessional.com 喜欢 0 阅读量: 499 作者: Smith, William Fortune,J Hashemi 摘要: 本书主要内容包括:材料科学与工程引论;原子结构与键合;材料中的晶体结构和非晶态结构;凝固和晶体缺陷;热激活过程和固体中的扩散;金属的力学性能;相图;工程合金;聚合物...
Günter Gottstein.Physical Foundations of Materials Science,2004Gottstein, G., 2004. Physical Foundations of Materials Science. New York, USA.G. Gottstein, Physical Foundations of Materials Science, Springer-Verlag, Berlin-Heidelberg (2004).G. Gottstein, Physical Foundations of Materials Science, ...
The goal of this Volume "Conceptual Foundations of Materials: A standard model for ground- and excited-state properties" is to present the fundamentals of electronic structure theory that are central to the understanding and prediction of materials phenomena and properties. The emphasis is on foundat...
Materials Science Foundations [MSFo]Professor Ravi Agarwala
Physical Foundations of Materials Science 作者:Gottstein, Gunter 出版社:Springer Verlag 副标题:Foundations of Materials Science 页数:502 定价:765.00 元 装帧:HRD ISBN:9783540401391 豆瓣评分 评价人数不足 写笔记 写书评 加入购书单 分享到 + 加入购书单...
Foundations Science, Revised EditionContemporary's Foundation series provides thorough coverage of basic skills at reading levels 4-6 Gives students meaningful contexts for learning. Make materials easy to understand. Provide students with the opportunity to create essay answers and practice the steps of...
We show that quaternion quantum mechanics has well-founded mathematical roots and can be derived from the model of the elastic continuum by French mathematician Augustin Cauchy, i.e., it can be regarded as representing the physical reality of elastic con