时,Focal Loss就等于原来的交叉熵。 二、pytorch代码实现 """ 以二分类任务为例 """fromtorchimportnnimporttorchclassFocalLoss(nn.Module):def__init__(self,gama=1.5,alpha=0.25,weight=None,reduction="mean")->None:super().__init__()self.loss_fcn=torch.nn.CrossEntropyLoss(weight=weight,reduction...
long).random_(5) output = loss(input, target) output_focalloss1 = focalloss_1(input, target) output_focalloss2 = focalloss_2(input, target) display(output, output_focalloss1, output_focalloss2) tensor(2.2966, grad_fn=<NllLossBackward>) tensor(2.0656, grad_fn=<MeanBackward0>) tensor(...
其中alpha 是对每个类别在训练数据中的频率有关, 但是下面的实现我们是基于alpha=1进行实验的。 标准的Cross Entropy 为: Focal Loss 为: 其中 以上公式为下面实现代码的基础。 采用基于pytorch 的yolo2在VOC的上的实验结果如下: 在单纯的替换了CrossEntropyLoss之后就有1个点左右的提升。效果还是比较显著的。本实...
2 PyTorch多分类实现 二分类的focal loss比较简单,网上的实现也都比较多,这里不再实现了。主要想实现一下多分类的focal loss主要是因为多分类的确实要比二分类的复杂一些,而且网上的实现五花八门,很多的讲解不够详细,并且可能有错误。 首先,明确一下loss函数的输入: 一个pred,shape为(bs, num_classes),并且未经...
, Focal loss 相当于 Cross Entropy loss。实际应用中一般取 。 另一种平衡版本的 focal loss, 在论文的实验中能获得更好的结果: pytorch 实现: https://github.com/facebookresearch/fvcore/blob/main/fvcore/nn/focal_loss.py # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.imp...
下面是基于PyTorch的Focal Loss代码实现: ```python import torch import torch.nn as nn import torch.nn.functional as F class FocalLoss(nn.Module): def __init__(self, gamma=2, alpha=0.25): super(FocalLoss, self).__init__ self.gamma = gamma self.alpha = alpha def forward(self, inputs...
FocalLoss的pytorch代码实现 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 classFocalLoss(nn.Module): def__init__(self, alpha=1, gamma=2, logits=False,reduce=True): super(FocalLoss,self).__init__() self.alpha=alpha...
这是Focal loss在Pytorch中的实现。 代码语言:javascript 复制 classWeightedFocalLoss(nn.Module):"Non weighted version of Focal Loss"def__init__(self,alpha=.25,gamma=2):super(WeightedFocalLoss,self).__init__()self.alpha=torch.tensor([alpha,1-alpha]).cuda()self.gamma=gamma ...
文本分类(六):不平衡文本分类,Focal Loss理论及PyTorch实现, 摘要:本篇主要从理论到实践解决文本分类中的样本不均衡问题。首先讲了下什么是样本不均衡现象以及可能带来的问题;然后重点从数据层面和模型层面讲解样本不均衡问题的解决策略。数据层面主要通过欠采样和过