召回率(Recall):针对数据集中的所有正例(TP+FN)而言,模型正确判断出的正例(TP)占数据集中所有正例的比例.FN表示被模型误认为是负例但实际是正例的数据.召回率也叫查全率,以物体检测为例,我们往往把图片中的物体作为正例,此时召回率高代表着模型可以找出图片中更多的物体! 代码语言:javascript 复制 "Recall: "...
tp)print("fp: ",fp)# 计算召回率tp=0fn=0foriinrange(len(gold)):ifi<len(pred)andgold[i]==pred[i]:tp+=1else:fn+=1recall=tp/(tp+fn)print("tp: ",tp)print("fn: ",fn)# 计算F1-Score
precesion = TP/(TP+FP)即,检索结果中,都是你认为应该为正的样本(第二个字母都是P),但是其中有你判断正确的和判断错误的(第一个字母有T ,F)。 recall = TP/(TP+FN)即,检索结果中,你判断为正的样本也确实为正的,以及那些没在检索结果中被你判断为负但是事实上是正的(FN)。
TP: IoU>0.5的检测框数量(同一Ground Truth只计算一次) FP: IoU<=0.5的检测框,或者是检测到同一个GT的多余检测框的数量 FN: 没有检测到的GT的数量 由前面定义,我们可以知道,要计算mAP必须先绘出各类别PR曲线,计算出AP。而如何采样PR曲线,VOC采用过两种不同方法。 在VOC2010以前,只需要选取当Recall >= 0,...
TP表示真阳率,表示真实样本是真的,预测样本也是真的,FP表示假阳率,真实样本是负,预测样本是正,...
召回率(Recall):针对数据集中的所有正例(TP+FN)而言,模型正确判断出的正例(TP)占数据集中所有正例的比例.FN表示被模型误认为是负例但实际是正例的数据.召回率也叫查全率,以物体检测为例,我们往往把图片中的物体作为正例,此时召回率高代表着模型可以找出图片中更多的物体!
TP+FN:真实正样本的总和,正确分类的正样本数量+漏报的正样本数量。 FP+TN:真实负样本的总和,负样本被误识别为正样本数量+正确分类的负样本数量。 TP+TN:正确分类的样本总和,正确分类的正样本数量+正确分类的负样本数量。 TP和TN都好理解,直接看第二位P和N就很明确的看出代表的是正样本还是负样本的数量。怎么...
TP : (T)该判断正确,§判断该样本为正样本(事实上样本为正) TN : (T)该判断正确,(N)判断该样本为负样本(事实上样本为负) FP : (F)该判断错误,§判断该样本为正样本(事实上样本为负) FN : (F)该判断错误,(N)判断该样本为负样本(事实上样本为正) ...
TP,即True Positive,表示分类器正确预测为正样本的实例数量。换句话说,它就是那些实际为正样本且被分类器识别为正样本的案例。FP,False Positive,指的是分类器预测为正样本但实际为负样本的错误预测数量。简单来说,FP就是误报的负样本。TN,True Negative,表示分类器正确预测为负样本的实例数量。
理解预测正负样本简称 TP、FP、TN、FN,这里第一位T/F表示预测行为正确或者错误,第二位P/N表示预测结果为正样本或负样本。所以四个分别对应:TP正确地预测为正样本,FP错误地预测为正样本,TN正确地预测为负样本, FN错误地预测为负样本。