Flow-matching方法:FLOW MATCHING FOR GENERATIVE MODELING(避免复杂数值求解) 消融ball 萌新研究者 51 人赞同了该文章 1.本文的目的 为了解决CNF连续流复杂的运算问题,本文得到了一种Flow Matching方法,其和高斯族路径兼容。Flow Matching除了可以得到更加稳定的diffusion,还可以训练CNF为非diffusion的概率路径。
Flow-based Model是一种基于Normalizing Flows(NFs)的生成模型,它通过一系列概率密度函数的变量变换,将复杂的概率分布转换为简单的概率分布,并通过逆变换生成新的数据样本。而Continuous Normalizing Flows(CNFs)是Normalizing Flows的扩展,它使用常微分方程(ODE)来表示连续的变换过程,用于建模概率分布。 Flow Matching(FM...
Flow matching (FM)是最近在深度概率机器学习社区中迅速流行起来的一种生成建模范式。流匹配结合了连续归一化流 (CNFs)和扩散模型 (DMs)的某些方面,缓解了这两种方法的关键问题。在这篇博文中,我们将从基础讲起,介绍 FM 模型的主要思想和独特属性。 假设我们有数据样本 x1,x2,...,xnx_1, x_2, ..., x_...
FLOW MATCHING FOR GENERATIVE MODELING 1 三个定理证明2 2个特殊VFcase(扩散条件VE、VP)3 1个最优传输条件VF, 视频播放量 2406、弹幕量 0、点赞数 22、投硬币枚数 16、收藏人数 69、转发人数 10, 视频作者 紫陌洛西, 作者简介 关注前沿AI应用和论文,相关视频:stable di
【Voicebox:Meta AI发布基于Flow Matching的最先进的语音生成模型,过学习使用大规模数据解决文本引导的语音填充任务,通过上下文学习在语音任务中胜过单一目的的AI模型,是首个能够泛化到未经专门训练的语音生成任务并具有最先进性能的模型,可以以各种风格生成高质量的音频片段,包括从头开始生成和修改给定的样本,可合成六种语...
SchrodingerBridgeConditionalFlowMatcher: z = ( x 0 , x 1 ) , q ( z ) = π ϵ ( x 0 , x 1 ) where π ϵ is an entropically regularized OT plan, although in practice this is often approximated by a minibatch OT plan (See Tong et al. 2023b). The flow-matching variant of...
15 p. Low-Rank Adapting Models for Sparse Autoencoders 26 p. Human-Precision Medicine Interaction: Public Perceptions of Polygenic Risk Score for Genetic Health Prediction 34 p. Spin oscillations of neutrinos scattered by the supermassive black hole in the galactic center 18 p. Redefining...
Flow matching has been successfully achieved for an MHD energy bypass system on a supersonic turbojet engine. The Numerical Propulsion System Simulation (NPSS) environment helped perform a thermodynamic cycle analysis to properly match the flows from an inlet employing a MHD energy bypass system (con...
bgflow pip install git+https://github.com/noegroup/bgflow.git@34df704bbde0c90ec3497dd757c4a4b4b9b69e95 # bgflow, branch flowmatching pip install einops nflows # dependecies for bgflow, part 1 conda install -c conda-forge openmm # dependecies for bgflow, part 2 # installing bgmol ...
Flow-based generative modeling is a powerful tool for solving inverse problems in physical sciences that can be used for sampling and likelihood evaluation with much lower inference times than traditional methods. We propose to refine flows with additional control signals based on a simulator. Control...