FULL INTERVAL JOIN:流任务中,左流或者右流的数据到达之后,如果没有 Join 到另外一条流的数据,就会等待(左流放在左流对应的 State 中等,右流放在右流对应的 State 中等),如果之后另一条流数据到达之后,发现能和刚刚那条数据 Join 到,则会输出+[L, R]。事件时间中随着 Watermark 的推进(也支持处理时间),发...
Interval join 有多种写法来实现 interval join,根据小节1中的数据我们用 <= 的方式来实现,还是做同样的逻辑,将 click 流和曝光流根据 impressionId 进行 interval join, 边界条件是点击流介于曝光流发生到曝光流发生后的 10 分钟,输出广告位和 impressionId,具体 SQL 语句如下所示: select adsdw_dwd_max_click...
问题一: Interval Join doesn't support consuming update and delete changes是因为输入A或者B是一个更...
import org.apache.flink.table.planner.plan.nodes.exec.spec.IntervalJoinSpec import org.apache.flink.table.planner.plan.nodes.exec.spec.IntervalJoinSpec.WindowBounds import org.apache.flink.table.planner.plan.nodes.exec.stream.StreamExecIntervalJoin import org.apache.flink.table.planner.plan.nodes.physi...
而在前面的数据准备中,我们根据点击流和曝光流提取实践时间属性字段,并且设置了允许 5 分钟乱序的 watermark。目前 Interval join 已经支持 inner ,left outer, right outer , full outer 等类型的 join。因此,interval join 只需要缓存时间边界内的数据,存储空间占用小,计算更为准确的实时 join 结果。
1、Interval Join 概述 在之前的Join算子中,一般使用的是coGroup算子,因为一个算子可以提供多种语义,但是也是有一些弊端的。因为coGroup只能实现在同一个窗口的两个数据流之间进行join,在实际的计算过程中,往往会遇到当req发生时,resp迟迟无法响应,这个时候,就会出现一个跨窗口的问题。也就是说经常会出现数据乱序,或者...
03 Flink SQL join 之 interval join 相对于 regular join,interval Join 则利用窗口的给两个输入表设定一个 Join 的时间界限,超出时间范围的数据则对 join 不可见并可以被清理掉,这样就能修正 regular join 因为没有剔除数据策略带来 join 结果的误差以及需要大量的资源。但是使用interval join,需要定义好时间属性字...
细分Flink SQL 支持的 Join: Regular Join:流与流的 Join,包括 Inner Equal Join、Outer Equal Join。 Interval Join:流与流的 Join,两条流一段时间区间内的 Join。 Temporal Join:流与流的 Join,包括事件时间,处理时间的 Temporal Join,类似于离线中的快照 Join。
时间区间 JOIN(Interval JOIN) 时间区间 JOIN 是另一种关联策略,它与上述的常规 JOIN 不同之处在于,左右表仅在某个时间范围(给定上界和下界)内进行关联,且只支持普通 Append 数据流,不支持含 Retract 的动态表。如下图(来自 Flink 官方文档)。它的好处是由于给定了关联的区间,因此只需要保留很少的状态,内存压力...
flink sql interval join 的解决方案以及原理的介绍:主要介绍 interval join 的在上述实战案例的运行结果及分析源码机制,博主期望你能了解到,interval join 的执行机制是会在你设置的 interval 区间之内互相等待一段时间,一旦时间推进(事件时间由 watermark 推进)到区间之外(即当前这条数据再也不可能被另一条流的数据...