结果显示,CPU和IPU分别达到了整体平均值49.3%和49.4%,证明我们没有降低原始模型的性能。 *我们目前的FLAN-T5-XL实施最大输入长度为896个标记,所以我们此处使用的MMLU子集,其样本没有超过这个长度。 结论 现在,我们就拥有了可以在IPU上以float16进行推理的FLAN-T5-XL的实施。您还可以前往Paperspace,亲身体验更多精彩。
在之前的一篇博文中,我们已经学习了如何 针对聊天对话数据摘要生成任务微调 FLAN-T5,那时我们使用的是 Base (250M 参数) 模型。本文,我们将研究如何将训练从 Base 扩展到 XL (30 亿参数) 或 XXL (110 亿参数)。针对聊天对话数据摘要生成任务微调 FLAN-T5 指南:https://www.philschmid.de/fine-tune-flan-...
我们根据Fine Tune FLAN-T5准备了一个run_seq2seq_deepspeed.py训练脚本,它支持我们配置 deepspeed 和其他超参数,包括google/flan-t5-xxl的模型 ID。 我们使用deepspeed启动器触发训练,输入给启动器的参数包括 GPU 数量、deepspeed 配置及其它超参数 (如google/flan-t5-xxl的模型 ID)。 !deepspeed --num_gpus=8 ...
使用 DeepSpeed 和 HuggingFace Transformers 对 FLAN-T5 XL/XXL 进行微调 《Scaling Instruction-Finetuned Language Models》论文中发布的 FLAN-T5 是 T5 的增强版本,它已经在多种任务中进行了微调。相同参数数量下,FLAN-T5 的表现比 T5 提高了两位数。Google 已经在 Hugging Face 上开源了 5 个版本,参数范围...
XL (30 亿参数) 模型:https://hf.co/google/flan-t5-xl XXL (110 亿参数) 模型:https://hf.co/google/flan-t5-xxl 这意味着我们将学习如何利用模型并行、多 GPU 以及 DeepSpeed ZeRO 来微调 FLAN-T5 XL 和 XXL。 DeepSpeed ZeRO 链接:https://www.deepspeed.ai/tutorials/zero/ ...
FLAN-T5 由很多各种各样的任务微调而得,因此,简单来讲,它就是个方方面面都更优的 T5 模型。相同参数量的条件下,FLAN-T5 的性能相比 T5 而言有两位数的提高。Google 在 Hugging Face 上开源了 5 个 FLAN-T5 的 checkpoints,参数量范围从 8000 万 到 110 亿。
FLAN-T5 由很多各种各样的任务微调而得,因此,简单来讲,它就是个方方面面都更优的 T5 模型。相同参数量的条件下,FLAN-T5 的性能相比 T5 而言有两位数的提高。Google 在 Hugging Face 上开源了5 个 FLAN-T5 的 checkpoints,参数量范围从 8000 万 到 110 亿。
使用DeepSpeed 和 HuggingFace Transformers 对 FLAN-T5 XL/XXL 进行微调 《Scaling Instruction-Finetuned Language Models》论文中发布的 FLAN-T5 是 T5 的增强版本,它已经在多种任务中进行了微调。相同参数数量下,FLAN-T5 的表现比 T5 提高了两位数。Google 已经在 Hugging Face 上开源了 5 个版本,参数范围从...
XL (30 亿参数) 模型: https:///google/flan-t5-xl XXL (110 亿参数) 模型: https:///google/flan-t5-xxl 这意味着我们将学习如何利用模型并行、多 GPU 以及 DeepSpeed ZeRO 来微调 FLAN-T5 XL 和 XXL。 DeepSpeed ZeRO 链接: https://www./tutorials/zero/ ...
/modelee/flan-t5-xl 保存更改 取消 发行版 暂无发行版 flan-t5-xl 开源评估指数 开源评估指数源自 OSS-Compass 评估体系,评估体系围绕以下三个维度对项目展开评估: 1. 开源生态 生产力:来评估开源项目输出软件制品和开源价值的能力。 创新力:用于评估开源软件及其生态系统的多样化程度。 稳健性:用于评估开源...