使用 DeepSpeed 和 HuggingFace Transformers 对 FLAN-T5 XL/XXL 进行微调 《Scaling Instruction-Finetuned Language Models》论文中发布的 FLAN-T5 是 T5 的增强版本,它已经在多种任务中进行了微调。相同参数数量下,FLAN-T5 的表现比 T5 提高了两位数。Google 已经在 Hugging Face 上开源了 5 个版本,参数范围...
Flan-T5-Large和Flan-T5-XL(分别有0.8B和3B的参数)的表现与其他参数明显更多的模型相似,例如GPT-3(175B参数)和Galactica(120B参数) GPT-3需要针对基准任务进行微调,以击败Flan-T5-XL Flan-T5的性能优于PaLM和LLaMA等较新的LLM的较小版本(同时也比其小数倍) 如何在IPU上运行Flan-T5? 您可以在Hugging Face上...
在所有的编码器块之后,将final_layer_norm*的输出转为float16,准备用于解码器,而解码器都是float16 *T5的LayerNorm的实现方式使得其实际上是自动发生的 下面的图表用以下颜色编码来表示数据的精确度: T5编码器由一连串的块组成,每个块包含一个自注意力层和一个前馈层: 其中的每一层都有相同的基本结构,唯一不同...
这意味着我们将学习如何利用模型并行、多 GPU 以及 DeepSpeed ZeRO 来微调 FLAN-T5 XL 和 XXL。DeepSpeed ZeRO 链接:https://www.deepspeed.ai/tutorials/zero/ 除了作为教程的部分之外,我们还跑了一系列实验,这些实验数据可以帮助你选择正确的硬件设置。你可以在 结果和实验 部分找到详细信息。# install git lfs...
我们将使用 Hugging Face 的 Hub 版本模型。这里的想法是,我们将设置两个模型,一个是 Flan20B,另一个是 flan-t5-xl,来展示使用 Langchain 与这个模型交流, 多么简单。 代码实现 先安装库 !pip -q install huggingface_hub langchain transformers 设置密钥: ...
在之前的一篇博文中,我们已经学习了如何针对聊天对话数据摘要生成任务微调 FLAN-T5,那时我们使用的是Base (250M 参数)模型。本文,我们将研究如何将训练从 Base 扩展到XL (30 亿参数)或XXL (110 亿参数)。 这意味着我们将学习如何利用模型并行、多 GPU 以及DeepSpeed ZeRO来微调 FLAN-T5 XL 和 XXL。
这意味着我们将学习如何利用模型并行、多 GPU 以及DeepSpeed ZeRO来微调 FLAN-T5 XL 和 XXL。 除了作为教程的部分之外,我们还跑了一系列实验,这些实验数据可以帮助你选择正确的硬件设置。你可以在结果和实验部分找到详细信息。 # install git lfs for pushing artifacts ...
https://hf.co/google/flan-t5-xl XXL (110 亿参数) 模型: https://hf.co/google/flan-t5-xxl 这意味着我们将学习如何利用模型并行、多 GPU 以及 DeepSpeed ZeRO 来微调 FLAN-T5 XL 和 XXL。 DeepSpeed ZeRO 链接: https://www.deepspeed.ai/tutorials/zero/ ...
Transformer 微调 FLAN-T5 XL/XXL 来自:Hugging Face Scaling Instruction-Finetuned Language Models 论文发布了 FLAN-T5 模型,它是 T5 模型的增强版。FLAN-T5 由很多各种各样的任务微调而得,因此,简单来讲,它就是个方方面面都更优的 T5 模型。相同参数量的条件下,FLAN-T5 的性能相比 T5 而言有两位数的提高。
使用DeepSpeed 和 HuggingFace Transformers 对 FLAN-T5 XL/XXL 进行微调 《Scaling Instruction-Finetuned Language Models》论文中发布的 FLAN-T5 是 T5 的增强版本,它已经在多种任务中进行了微调。相同参数数量下,FLAN-T5 的表现比 T5 提高了两位数。Google 已经在 Hugging Face 上开源了 5 个版本,参数范围从...