这里的Flan指的是(Instruction finetuning),即"基于指令的微调";T5是2019年Google发布的一个语言模型了。注意这里的语言模型可以进行任意的替换(需要有Decoder部分,所以「不包括BERT这类纯Encoder语言模型」),论文的核心贡献是提出一套多任务的微调方案(Flan),来极大提升语言模型的泛化性。 Flat 例如下面文章中的例子,...
Flan-T5 是一种基于 T5 架构的预训练语言模型。T5(Text-To-Text Transfer Transformer)是由 Google 提出的统一文本到文本的传输模型架构,通过大量的文本数据进行预训练,并且在多个下游任务中表现出色。Flan-T5 进一步在 T5 的基础上,通过指令调优(instruction tuning)和其他改进,增强了模型在各种任务上的性能。 1.1 ...
这里的Flan指的是(Instruction finetuning),即"基于指令的微调";T5是2019年Google发布的一个语言模型了。注意这里的语言模型可以进行任意的替换(需要有Decoder部分,所以「不包括BERT这类纯Encoder语言模型」),论文的核心贡献是提出一套多任务的微调方案(Flan),来极大提升语言模型的泛化性。 Flat 例如下面文章中的例子,...
fromtransformersimportAutoModelForSeq2SeqLM# huggingface hub模型IDmodel_id="philschmid/flan-t5-xxl-sharded-fp16"# 从hub加载模型model=AutoModelForSeq2SeqLM.from_pretrained(model_id,load_in_8bit=True,device_map="auto")frompeftimportLoraConfig,get_peft_model,prepare_model_for_int8_training,TaskTy...
一个模型解决1600+NLP任务!本文扩展了指令微调并通过扩大参数、增加任务的方式训练了Flan-PaLM;实验表明,模型性能随着更大的模型尺寸和更多的微调任务而显着提高,并可以在没有提示工程或少量样本的情况下执行零样本推理;最后公开发布了大幅优于基线 T5 模型的Flan-T5模型。
「模型」: https://huggingface.co/google/flan-t5-xxl 1. Flan-T5是什么 「Flan-T5」是Google最新的一篇工作,通过在超大规模的任务上进行微调,让语言模型具备了极强的泛化性能,做到单个模型就可以在1800多个NLP任务上都能有很好的表现。这意味着模型一旦训练完毕,可以直接在几乎全部的NLP任务上直接使用,实现「One...
本文通过基于谷歌Flan-T5大型语言模型的提示选择案例研究指出,在大型语言模型评估中存在不可靠数据;除非清洁测试数据,否则可能会为大型语言模型选择次优提示方案(或通过模型评估做出其他次优选择)。 译者|朱先忠 审校| 重楼 引言 可靠的模型评估是MLOP和LLMops的核心,负责指导关键决策,如部署哪个模型或提示符(以及是否...
代码地址:https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints 原文摘要:在以指令为措辞的数据集上对语言模型进行微调已被证明可以提高模型的性能和对未见任务的概括性。在本文中,我们探索了指令微调,特别关注(1)任务数量的扩展,(2)模型规模的扩展,以及(3)思维链数据的微调。
T5原本的训练方式是通过prefix,实际不是通过自然语言方式告诉模型想要模型做什么。 Flan这种方式通过Instruction方式,也就是人类可以看懂的方式去告诉模型要做什么。 3 『更大规模、更多任务:指令微调的大规模扩展』 我们最新的工作Scaling ...
1. Flan-T5是什么 「Flan-T5」是Google最新的一篇工作,通过在超大规模的任务上进行微调,让语言模型具备了极强的泛化性能,做到单个模型就可以在1800多个NLP任务上都能有很好的表现。这意味着模型一旦训练完毕,可以直接在几乎全部的NLP任务上直接使用,实现「One model for ALL tasks」,这就非常有诱惑力!