GitHub is where people build software. More than 100 million people use GitHub to discover, fork, and contribute to over 420 million projects.
Introductory Guide where we will talk about Different Techniques of Fine Tuning LLMs. Fine-tuning Large Language Models (LLMs) involves adapting a pre-trained language model to a specific task or domain by training it on a smaller, task-specific dataset. The main goal of fine-tuning is to ...
prefix-tuning: 就是训练下游任务的时候,冻住pretrained LLM参数(pytorch里面就是grad=False, 梯度不更新)只训练每个特定任务的参数(也叫prefix, 叫prefix是因为他的添加的前缀词都在输入的左边如下图4) 图3: prefix-tuning示意图 图4: prefix 适用场景(Autoregessive model : GPT, opt, encoder-decoder model:...
LLMCat 亚马逊信息服务(北京)有限公司上海分公司 数据科学家10 人赞同了该文章 LLama3-ChatQA-8B的fine-tuning-QLoRA 在深度学习领域,大型预训练语言模型(如LLaMA)已经显示出在各种自然语言处理任务上的卓越性能。然而,这些模型的庞大规模往往伴随着巨大的存储和计算需求。为了解决这一问题,本文将介绍如何...
项目地址:https://github.com/georgian-io/LLM-Finetuning-Hub 该项目提供了针对多个流行LLM的微调脚本,如Flan-T5、Falcon、RedPajama等,使用户可以通过省时省力的方法,基于LORA和Prefix Tuning等模型微调技术,在自定义数据集上快速微调这些LLM。同时,该项目还提供了丰富的评估指标,允许用户从性能、训练时间、训练成本...
python -u ./fine-tuning.py \ --base_model “meta-llama/Llama-2-70b-hf” \ For more details, refer to the BigDL LLMonline examplein GitHub. Get Started To get started on fine-tuning large language models using BigDL LLM and the QLoRA technique, we have developed a comprehe...
1.1. 为什么要 fine-tuning 1.1.1. 微调可以强化预训练模型在特定任务上的能力 1.特定领域能力增强:微调把处理通用任务的能力,在特定领域上加强。比如情感分类任务,本质上预训练模型是有此能力的,但可以通过微调方式对这一能力进行增强。 2.增加新的信息:通过微调可以让预训练模型学习到新的信息,比如常见的自我认知...
LLM-Finetune开源地址: https://github.com/OpenCSGs/llm-finetune 推理项目的开源地址: https://github.com/OpenCSGs/llm-inference 开源大模型的开源地址: https://github.com/OpenCSGs/CSGHub 开放传神(OpenCSG)成立于2023年,是一家致力于大模型生态社区建设,汇集人工智能行业上下游企业链共同为大模型在垂直行...
【LLM Finetuning Hub:LLM微调中心,用于将各种大型语言模型进行微调,以适应个性化用例】’LLM Finetuning Hub - Repository that contains LLM fine-tuning and deployment scripts along with our research findings.' Georgian GitHub: github.com/georgian-io/LLM-Finetuning-Hub #开源# #机器学习# û收藏 52...
we can use more adapters to improve performance without significantly increasing the total memory used. While LoRA was designed as a Parameter Efficient Finetuning (PEFT) method, most of the memory footprint for LLM finetuning comes from activation gradients and not from the learned LoRA parameters...