关键问题是,你用axolotl进行微调,只需要对我们的大模型meta-llama/Llama-2-7b-hf指定一个yaml文件即可。以下是这个文件的数据集dataset的部分: # llama-tiger.yaml # base model base_model: meta-llama/Llama-2-7b-hf base_model_config: meta-llama/Llama-2-7b-hf model_type: LlamaForCausalLM tokenizer_...
其中一个亮点在于随 LLaMA-2 一同发布的 RLHF 模型 LLaMA-2-chat。 LLaMA-2-chat 几乎是开源界仅有的 RLHF 模型,自然也引起了大家的高度关注。但 LLaMA-2-chat 美中不足的是不具备中文能力。尽管有些时候可以通过 prompt 的方式让 LLaMA-2-chat 讲一些中文,但大多数的情况下,LLaMA-2-chat 会固执地讲英...
首先,访问 llama-recipes 项目,此项目为对 LLaMA-2 进行 fine-tuning 的新手提供了极大便利。下载并准备训练数据集 GuanacoDataset,特别推荐选择适用于指令遵循任务的 guanaco_non_chat-utf8.json,但根据实际情况,guanaco_non_chat_mini_52K-utf8.json 也是一个高效选项。将数据集重命名为 alpaca_...
A WebUI for LLM fast finetuning on GPU or CPU. typescript webui llama train lora finetune llm Updated Aug 12, 2024 TypeScript hustcc / miz Star 22 Code Issues Pull requests 🎯 Generate fake data for finetune of AI, Just like a person. faker mocker fake-data finetune finetune...
Using the LoRA configuration shown above, we’ll fine-tune the Llama2 model along with hyper-parameters. A code snippet for training the model is shown in the following: # Set training parameterstraining_arguments=TrainingArguments(...)trainer=SFTTrainer(model=model,t...
outputUri: oci://<bucket-for-finetuned-model>@<namespace>/$JOB_OCID env: - name: MODEL_NAME value: meta-llama/Llama-2-13b-hf - name: HUGGING_FACE_HUB_TOKEN value: <your-hugging-face-token> - name: LD_LIBRARY_PATH value: /usr/local/nvidia/lib:/usr/local/nvidia/lib64:/opt/cond...
Figure 1. Llama 2 7B Fine-Tuning Performance on Intel® Data Center GPU Refer to Configurations and Disclaimers for configurations In a single-server configuration with a single GPU card, the time taken to fine-tune Llama 2 7B ranges from 5.35 hours with one Intel® Data Ce...
1、下载好7B、llama-lora、alpaca-lora到model_hub下。进入到model_hub目录下。2、将llama转换为hugging...
So if you, e.g., usemeta-llama/Llama-2-7b-hfas your base model, then be aware that the default of that isuse_cache=True(comparethe config on HuggingFace)! And so will be the default for your finetuned version, unless you specify something else. ...
(1)Llama 2与Llama 1的主要结构基本一致同样也是在transformer decoder结构上做了3大改进:将layer-norm 改成RMSNorm(Root Mean square Layer Normalization),并将其移到input层,而不是output层、采用SwiGLU激活函数、采用旋转位置嵌入RoPE。 (2)Llama 2上下文长度由之前的2048升级到4096,可以理解和生成更长的文本...