Body Hello. I'm testing new fine grained PAT and cannot seem to make it work. I can't checkout additional repo code from my org. Here is my workflow where I'm testing it name:06 - Debugon:pull_request:types:[opened, synchronize, reopened]jobs:debug_job:runs-on:ubuntu-latestpermission...
authentication server to the application, requesting execution of an operation comprising invoking the operation by the application providing the access token comprising restricted entitlements, invoking the access control server, and providing the scope of the token comprising the subset of the existing ...
续费VIP 立即续费VIP 会员中心 VIP福利社 VIP免费专区 VIP专属特权 客户端 登录 百度文库 其他 new fine-grained personal access tokennew fine-grained personal access token翻译 新的细粒度个人访问令牌 ©2022 Baidu |由 百度智能云 提供计算服务 | 使用百度前必读 | 文库协议 | 网站地图 | 百度营销 ...
GitHub 目前支持两种类型的 personal access token:fine-grained personal access token 和 personal access tokens (classic)。 GitHub 建议尽可能使用 fine-grained personal access token 而不是 personal access tokens (classic)。与 personal access tokens (classic) 相比,Fine-grained personal access token 具有几...
save_token_embedding.py update code and data Apr 16, 2024 train_mygo_fgc.py update README Apr 17, 2024 utils.py update code and data Apr 16, 2024 Repository files navigation README MyGO: Discrete Modality Information as Fine-Grained Tokens for Multi-modal Knowledge Graph Completion Overview ...
It's also possible to create a Fine-grained token for individual repositories, which would also need the same permissions to import resources. We need to discuss how we should handle Fine-grained tokens: As they are still inbetado we want to support them?
Source:[2212.10423] Fine-Grained Distillation for Long Document Retrieval (arxiv.org) TL;DR:在进行大规模检索时,检索的对象通常会存在不少的长文档,这种长文档虽然可以用一个主题概括,但是由于其内容很长,所以经常涵盖多种主题,以至于进行匹配时出现问题,蒸馏效果很差。所以本文作者提出了新的框架,细粒度蒸馏(...
FFVT在最后一层融合每层选取的判别token特征 不足与创新点: 提出将集成学习的思想融入ViT,看作是一种内部集成学习的transformer架构。具体来说: 将MHSA中的每个头视为弱学习器,通过多头投票模块选取判别区域token 将不同层视为弱学习器,通过跨层细化模块和动态选择模块融合跨层特征 ...
论文信息: [1] Lewei Yao, Runhui Huang, Lu Hou, Guansong Lu, Minzhe Niu, Hang Xu, Xiaodan Liang, Zhenguo Li, Xin Jiang, and Chunjing Xu. FILIP: Fine-grained interactive language-image pre-training. In International Conference on Learning Representations, 2022. 论文链接: [https://arxiv.or...
Predicting drug-target interaction (DTI) is critical in the drug discovery process. Despite remarkable advances in recent DTI models through the integration of representations from diverse drug and target encoders, such models often struggle to capture the fine-grained interactions between drugs and pro...