I tried looking for and solving this for an hour and I am stumped. the question I am trying to have answered is: find an equation of the tangent line to the curve at the given point y=4x-3x^2, (2,-4) 0 Comments Sign in to comment. ...
Calculus I: Lesson 6: Finding the Equation of a Tangent LineDr. Karen Brucks
Finding a Linear EquationPerhaps the most familiar form of a linear equation is the slope-intercept form, written as y=mx+by=mx+b, where m=slopem=slope and b=y-interceptb=y-intercept. Let us begin with the slope. The Slope of a Line The slope of a line refers to the ratio of ...
The slope of the chord is −1−1, so the slope of the perpendicular bisector is 11. Thus the perpendicular bisector has equation of the shape y=x+by=x+b. Since the midpoint (13/2,5/2)(13/2,5/2) of our two given points is on the perpendicular bisector, we have b...
Fig. 1 shows an example of a quadratic function with normal and tangent lines. Fig. 1 Tangent and normal lines at the point of tangency A (1,1) of a quadratic function.Slope of a Normal Line Normal Line Equation How to Find a Normal Line Normal Line Examples Lesson Summary...
Software is the second half of the equation, and easily runs the same risk of breaking the bank, so I’m going to suggest you tread with caution. Throwing money at a problem seldom reliably solves anything beyond the rare issue of having too much cash. So we’ll focus on some free opt...
Find the value of t in the equation: 6^t=1200. A. Find \frac{dy}{dx} expressed as a function of t for the given the parametric equations: x=6t+\ln t\\y=7t-\ln t\\ \frac{dy}{dx}=\boxed{\space} B. Find \frac{...
In each case the rate is a ___ that has to be computed given the rate at which some other variable, like time, is known to change. derivative To find this derivative we write an equation that relates the two variables. We then ___ both sides of the equation with respect to __...
The derivative of an absolute value function and of any function, for that matter, is the slope of the tangent line to the curve at a given point. Because such functions are piecewise ones, one can differentiate each piece separately. How do you find the derivative of the absolute value of...
When two lines intersect inside a circle, they form an angle at each intersection. The curved portion of the circle opposite such an angle, between the two line segments or rays, is called an arc. An arc's length is the measurement of that arc along and around the outer edge, or ...