FindClusters[{e1, e2, ...}] 把 e i 分成相似元素组成的聚类. FindClusters[{e1 -> v1, e2 -> v2, ...}] 返回对应于各个聚类中的 e i 的 vi. FindClusters[data, n] 将 data 分割为 n 个聚类.
可以用来观察分群结果的包——clustree。 可以把不同resolution的分类结果放在一起展示,通过一个分类树的图,可以看到新的细胞群是由低分辨率状态下哪些细胞组合成的,方便选择合适的resolution参数。 library(clustree) sceList.integrated <- FindClusters(sceList.integrated, resolution = seq(0.4,1.2,by=0.2)) clustree...
Returns a Seurat object where the idents have been updated with new cluster info; latest clustering results will be stored in object metadata under 'seurat_clusters'. Note that 'seurat_clusters' will be overwritten everytime FindClusters is run. 值 返回一个Seurat对象,其中标识已用新的群集信息更新...
FindClustersSee Cluster Analysis About MathWorld MathWorld Classroom Contribute MathWorld Book 13,154 Entries Last Updated: Thu May 30 2024 ©1999–2024 Wolfram Research, Inc. Terms of Use wolfram.com Wolfram Language Mathematica Wolfram Demonstrations Wolfram for Education Created, developed and nurt...
* FindClusters.Seurat() * CheckDots() //todo * names() * AddMetaData() //todo * levels() * LogSeuratCommand() //todo * FindClusters.default() * RunModularityClustering() //todo #R代码的尽头通常是C++,这里又出来了 java。 * RunModularityClusteringCpp() #下一节看看 Rcpp 包怎么写。又不...
首先来说annoy ,annoy全称“Approximate Nearest Neighbors Oh Yeah”,是一种适合实际应用的快速相似查找算法。Annoy 同样通过建立一个二叉树来使得每个点查找时间复杂度是O(log n),和kd树不同的是,annoy没有对k维特征进行切分。annoy的每一次空间划分,可以看作聚类数为2的KMeans过程。收敛后在产生...
先设置resolution为大众化的0.5,初步鉴定各分群是什么细胞,观察感兴趣的分群形状是否有继续分群的趋势。 采用clustree可视化不同resolution下各分群的裂变情况 res_used <- c(0.5,0.8,1.0,1.2,1.5) for(i in res_used){ res_tree <- FindClusters(object = sce.mergeTEN, verbose = T, resolution = res_used...
library(Seurat)?FindClusters Description:Identify clustersofcells by a shared nearestneighbor(SNN)modularity optimization based clustering algorithm.First calculate k-nearest neighbors and construct theSNNgraph.Then optimize the modularityfunctionto determine clusters.For a full ...
第一步:生成图;先KNN,然后SNN;由FindNeighbors()函数实现;计算细胞之间的相似性 第二部:识别图;Louvain algorithm;由FindClusters()函数实现;划分细胞类群 1. KNN 计算得到每个细胞的K个最近邻细胞;基于对每个细胞PCA结果的欧氏距离计算 由FindNeighbors()实现 ...
>obj <- FindClusters(obj, resolution = seq(0.5,1.2,by=0.1)) >clustree(obj) 结果如下图: 从上面的代码可以看到,clustree包对Seuat对象非常友好,可以直接用Seurat对象展示不同resolution的分群结果,同时可以清晰的看到不同resolution下细胞群之间的关系。图中一行表示一个resolution下所有的细胞,整体来看随...