We must obtain a trigonometric function value ofθ.20= 1-2 sin"42 sin.52 510ΘV10√10√10√10√10sin 10Now find values of cos and tan by sketching and labeling a right triangle quadrant . Because sin thel √10triangle in Figure 6 is labeled accordingly. The Pythagorean theorem is used...
We are asked for the extreme values of f subject to the constraint g(x,y)=x^2+y^2=1. Using Lagrange multipliers, we solve the equations ∇ f=λ ∇ g and g(x,y)=1, which can be written asf_x=λ g_x f_y=λ g_y g(x,y)=1or as9 2x = 2xλ10 4y = 2yλ11 x^...
百度试题 结果1 题目Find the value of the trigonometric function when t is replaced by -t. ( )cos t=-1 A. 1 B. undefined C. 0 D. -1 相关知识点: 试题来源: 解析 D 反馈 收藏
Find the value of the function f(x)=1+x+int1^x((lnt)^2+2lnt) dt where ... 07:59 int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1... 04:56 If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), th...
百度试题 结果1 题目Find the value of the exponential function y=(12)x. Fill in the blanks. x −3 −2 −1 0 1 2 3 y=(12)x 相关知识点: 试题来源: 解析 8;4;2;1;12;14;18 N/A 反馈 收藏
【题目】微积分3Find the maximal value of the functionf(x;y)=xy√((1-x)^2)[a^2-y^2)]for a=96.7, b=35.7 Enter your answer with4 decimal places 答案 【解析】[f(x,y)]∼2=x^2y∼2*(1-x)^2=2 (a-2*b)*2*x∼2/a-2*y 2/bx^2≤(a-2*b)^2+2+[(2)]-x 2...
百度试题 结果1 题目【题目】refer to the functions below. Find theindicated value of the function.f(x)=√(x+3)-x+1 x(t)=t^2-1 h(x)=x^2+1/x+2f() 相关知识点: 试题来源: 解析 【解析】√3+1=2.73 反馈 收藏
Find the value of the trigonometric function. If possible, give the exact value; otherwise, use a calculator to find an approximate value correct to five decimal places. (1)Please complete the following questions. ①sin (3 π )4 ②cos (3 π )4 (2)Please complete the following questions....
The average value of function over the interval is defined as . Substitute the actual values into the formula for the average value of a function. Split the single integral into multipleintegrals. Since is constant with respect to , move out of the integral. By the Power Rule, the integ...
We can find the value of the function at the certain point by substituting the arguments of the function to the variables of the function. We proceed... Learn more about this topic: Introduction to Functions from Chapter 1/ Lesson 1