2. If a matrix has eight elements, find the possible orders of the matrix. 相关知识点: 试题来源: 解析 8 = 8 x 1,8 = 1 x 8,8 = 2 ×4,8 = 4 × 2.Therefore, the possible orders of the matrix are 8 x 1,1 ×8,2 × 4 and 4 ×2. ...
百度试题 结果1 题目Find the determinant of matrix. Then find the inverse of the matrix, if it exists.A=(bmatrix)-5&104&-8(bmatrix) 相关知识点: 试题来源: 解析 0; does not exist 反馈 收藏
Answer to: Find the determinant of the matrix. Expand by cofactors using the row or column that appears to make the computations easiest. By...
from Chapter 2 / Lesson 2 101K Explore the determinant of a matrix, which is widely used in linear algebra. Understand how to find the determinant of a matrix with determinant rules and learn to determine the order of the matrix. Related...
百度试题 结果1 题目Find the inverse of the matrix, if it exists. If it does not exist, write singular."(bmatrix)-1&-2&-23&7&91&4&7(bmatrix) 相关知识点: 试题来源: 解析 (bmatrix)13&6&-4-12&-5&35&2&-1(bmatrix) 反馈 收藏 ...
For what value(s) of x,if any, does the matrix have no inverse?(1)(2)(3) 答案 (1); inverse does not exist for (2); inverse exists for all x(3); inverse exists for all x相关推荐 1Find the inverse of the matrix. For what value(s) of x,if any, does the matrix have no...
\(A=\begin{bmatrix}1&-3\\-1&3\end{bmatrix}\).Use row operations on the augmented matrix \([A\mid I]\):\(\left[\begin{array}{cc|cc}1 & -3 &1&0 \\-1 & 3 &0&1\end{array}\right]\)\(\left[\begin{array}{cc|cc}1 & -3&1&0 \\0&0&1&1\end{array}\right]...
(3)(bmatrix)cos x& -sin x sin x& cos x(bmatrix); inverse exists for all x结果一 题目 Find the inverse of the matrix. For what value (s) of x, if any, does the matrix have no inverse? 答案 Find matrix inverse according to the formula: det 相关推荐 1Find the inverse of th...
百度试题 结果1 题目Find the inverse of matrix A. A=(bmatrix) 1 & -1&2 2&1&-10&2&-2 (bmatrix)Now verify that AA^(-1)=A^(-1) A=I. Explain. 相关知识点: 试题来源: 解析 (bmatrix) 1&0&0 0&1& 00&0&1 (bmatrix) 反馈 收藏 ...
The rank of a square matrix can also be determined by finding the order of the largest non-zero determinant of its submatrices. Rank of Rectangular Matrix: For a rectangular matrix (i.e., a matrix with a different number of rows and columns), the rank is the maximum number of linearly ...