Set the derivative equal to ( 0) then solve the equation( 3x^2-14x=0). ( x=0,(14)/3) Solve the original function( f(x)=x^3-7x^2) at ( x=0). ( 0) Solve the original function( f(x)=x^3-7x^2) at ( x=(14)/3). ( -(1372)/(27)) The horizontaltangentl...
Subtract ( xy) from both sides of the equation. ( (sin)(x+y)-xy=0) Set( (sin)(x+y)-xy) as a function of ( x). ( f(x)=0) ( f=0) is not a function of ( f=0). Therefore, it is either a horizontal or verticalfunction and has no horizontaltangentline. No horizo...
( f(x)=2x) Find the derivative. ( 2) Since ( 2≠ 0), there are no solutions. No solution There are no solution found by setting the derivative equal to ( 0), ( 2=0) so there are no horizontaltangentlines. No horizontaltangentlines found反馈...
Note that both derivatives (dy/dθ and dx/dθ) are 0 when θ=0. Using this information alone, you do not know whether the graph has a horizontal or vertical tangent line at the pole. From Figure, however, you can see that the graph has a cusp at the pole....
Find the points on the given curve where the tangent line is horizontal or vertical. r=e^(θ ) 相关知识点: 试题来源: 解析 horizontal tangents at (e^(π (n- 1/4)),π (n- 14)).vertical tangents at (e^(π (n+ 1/4)),π (n+ 14)). r=e^(θ ) ⇒ x=rcos θ=e^(θ...
Find the points on the given curve where the tangent line is horizontal or vertical. r=e^(θ ) 相关知识点: 试题来源: 解析 horizontal tangents at (e^(π (n- 1/4)),π (n- 14)). vertical tangents at (e^(π (n+ 1/4)),π (n+ 14))....
【题目】 Consider the following function.f(r)= 2r^3+ r^2- 0.08r+ 19Find the two points on the graph at which the tangent line is horizontal. Give your values co rrect to 2 decimal places.(chinese:查找在该切线是水平的曲线图上的两个点。 给你的值精确到小数点后2位。 )(, )-...
结果1 题目 Find the polar coordinates of the points on the lemniscate r2 =cos 2r in Figure 25 where the tangent line is horizontal.y r^2=cos(2t)x-11FIGURE 25 相关知识点: 试题来源: 解析 ()(), (,),(,) 反馈 收藏
Find the points on the curve where the tangent line is horizontal. (a) x = 5 ( cos ? ? cos 2 ? ) , y = 5 ( sin ? ? sin ? cos ? ) Find the slope of the tangent line to the given polar curve at the Find equation of the tangent line...
Find the tangent line to the polar curver=4sinθatθ=π3. Find the Tangent Line to the Polar Curve: Ifr=f(θ)is a polar curve then the slope at point(r,θ)is given by: Slope(m)=f′(θ)sin(θ)+f(θ)cos(θ)f′(θ)cos(θ)−f(θ)sin...