解析 The function declaration ( f(x)) varies according to ( x), but the input function( 1/r,(2,3)) only contains the variable( r). Assume ( f(r)=1/r,(2,3)). ( f(r)=1/r,(2,3)) Substitute using the averagerate of change formula. ( ((1/3)-(1/2))/((3)-...
Find the average rate of change of f(x)=3x^2:From 1 to 5 相关知识点: 试题来源: 解析 18 The average rate of change of f(x)=3x^2 from 1 to 5 is(Δ y)(Δ x)=(f(5)-f(1))(5-1)=(75-3)(5-1)=(72)4=18反馈 收藏 ...
Find the average rate of change for f(x) = x^2 - 6x + 9 on the interval [1,7] 扫码下载作业帮搜索答疑一搜即得 答案解析 查看更多优质解析 解答一 举报 f(x) = x^2 - 6x + 9 on the interval [1,7]=[f(7)-f(1)]/(7-1)=[49-42+9-1+6-9]/6=2 解析看不懂?免费查看同类题...
To find theaveragerateof change, find theslope. Slopeis equal to the change inyyover the change inxx, orriseoverrun. m=change in ychange in xm=change in ychange in x The change inxxis equal to thedifferenceinx-coordinates(also calledrun), and the change inyyis equal to thedifferenceiny...
Find the average rate of change for the following function. f(x)=x between x=25 and x=36. Rate of Change of a Function If y=f(x) is a curve, then the value of f(x) at x=a is f(a). The average rate of change for f(x) from x=a to x=b ...
find the average rate of change of the function over the given intervalsf(x)=x^3 + 1[2,3] [-1,1]g(t)= 2 + cos(t)[0,∏] [-∏,∏]只有翻译也可以怎么求不规则曲线两点间的平均值呢?只有解答也可以 相关知识点: 试题来源: 解析 翻译:求以下函数在所给区间的平均变化率 一点上的变化...
英语翻译find the average rate of change of the function over the given intervalsf(x)=x^3 + 1[2,3] [-1,1]g(t)= 2 + cos(t)[0,∏] [-∏,∏]只有翻译也可以怎么求不规则曲线两点间的平均值呢?只有解答也可以 相关知识点: 试题来源: 解析 翻译:求以下函数在所给区间的平均变化率 一点上...
Find the average rate of change of {eq}f(x) = x^3 - 3x^2 + 2x {/eq} from {eq}x = -2 {/eq} to {eq}x = 1 {/eq}. Simplify your answer as much as possible. Average Rate of Change: The average rate of change is the v...
Find the average rate of change of the function over the given intervals. h(t)=cott a.π4,3π4 b.5π6,3π2 a.The average rate of change overπ4,3π4is◻ (Type an exact answer, usingπas needed.) b.The average r...
The average rate of change of a function {eq}f(x) {/eq} on the interval {eq}[a, b] {/eq} is found using the formula {eq}\frac{f(b)-f(a)}{b-a} {/eq}. This is also the slope of the secant line between the points {eq}(a, f(a)) {/eq} and {...