void addNum(int num) - 从数据流中添加一个整数到数据结构中。 double findMedian() - 返回目前所有元素的中位数。 示例: addNum(1) addNum(2) findMedian() -> 1.5 addNum(3) findMedian() -> 2 进阶: 如果数据流中所有整数都在 0 到 100 范围内,你将如何优化你的算法? 如果数据流中 99% 的...
void addNum(int num) - Add a integer number from the data stream to the data structure. double findMedian() - Return the median of all elements so far. For example: addNum(1) addNum(2) findMedian() -> 1.5 addNum(3) findMedian() -> 2 用一个最大堆存放比中位数小(或等于)的元...
void addNum(int num) - Add a integer number from the data stream to the data structure. double findMedian() - Return the median of all elements so far. For example: add(1) add(2) findMedian() -> 1.5 add(3) findMedian() -> 2 设计数据结构存储数据流并能找出数据流的中位数。 思路...
[2,3], the median is (2 + 3) / 2 = 2.5 Design a data structure that supports the following two operations: void addNum(int num) - Add a integer number from the data stream to the data structure. double findMedian() - Return the median of all elements so far. 描述 中位数是有...
* If 99% of all integer numbers from the stream are between 0 and 100, how* would you optimize it?***/classMedianFinder{private:multiset<int>m;multiset<int>::const_iteratorl;multiset<int>::const_iteratorr;public:/** initialize your data structure here. */MedianFinder(){}voidaddNum(...
* var obj = new MedianFinder() * obj.addNum(num) * var param_2 = obj.findMedian() */ 暴力法 Runtime: 4480 ms, faster than 16.55% Memory Usage: 60 MB, less than 20.63% /** * initialize your data structure here. */varMedianFinder=function(){this.nums=[]};/** ...
double findMedian() - Return the median of all elements so far. Example: addNum(1) addNum(2)findMedian()->1.5 addNum(3)findMedian()->2 Link: https://leetcode.com/problems/find-median-from-data-stream/description/ 解题方法: 使用因为这个数据结构只需要找中位数,不需要pop,所以我们可以使用...
【nc】 Heap / Priority Queue 1/1 Find Median from Data Stream 数据流中位数 295 === 思路: // 主要学习一下思想 /* 堆的特点: 1 获取最大值和最小值:由于堆的特性,我们可以在 O(1) 时间复杂度内获取到最大值(在最大堆中)或最小值(在最小堆中)。
Can you solve this real interview question? Find Median from Data Stream - The median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value, and the median is the mean of the two middle values. * For
void addNum(int num) - Add a integer number from the data stream to the data structure. double findMedian() - Return the median of all elements so far. For example: add(1)add(2)findMedian()->1.5add(3)findMedian()->2 分析