代码如下: 1/**2* Definition for a binary tree node.3* public class TreeNode {4* int val;5* TreeNode left;6* TreeNode right;7* TreeNode(int x) { val = x; }8* }9*/10classSolution {11publicint[] findMode(TreeNode root) {12List<Integer> arr =newArrayList<Integer>();13List<I...
TreeNode node = stack.pop();if(node.left !=null) { stack.push(node.left); } map.put(node.val, map.getOrDefault(node.val,0)+1); max = Math.max(max, map.get(node.val));if(node.right !=null) { stack.push(node.right); } } List<Integer> list =newLinkedList<>();for(intke...
int max = INT_MIN; for(auto&& w:mp) if(w.second>=max) max = w.second; for(auto&& w:mp) if(w.second==max) v.push_back(w.first); return v; } void inorder(map<int,int> &mp,TreeNode* root) { if(root==NULL) return; inorder(mp,root->left); mp[root->val]++; inorder...
root->right=newTreeNode(20); root->right->left=newTreeNode(18); cout<<"Minimum value in the BST is: "<<minValue(root)<<endl; cout<<"Maximum value in the BST is: "<<maxValue(root)<<endl;return0; }
returnmax_width root=insert(None,15) insert(root,10) insert(root,25) insert(root,6) insert(root,14) insert(root,20) insert(root,60) print("Printing the maximum width of the binary tree.") print(width(root)) Output: Printing the maximum width of the binary tree. ...
mx= max(mx, ++m[node->val]); inorder(node->right, m, mx); } }; 下面这种解法是上面方法的迭代形式,也是用的中序遍历的方法,有兴趣的童鞋可以实现其他的遍历方法: 解法二: classSolution {public: vector<int> findMode(TreeNode*root) {if(!root)return{}; ...
max_cnt = v ans = [k] elif v == max_cnt and k not in ans: ans.append(k) return ans 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28.
一. find函数存在于算法中 其头文件为#include<algorithm> 二. 代码示例: 代码语言:javascript 代码 #include<vector>#include<algorithm>#include<iostream>using namespace std;intmain(){vector<int>L;L.pushback(1);L.pushback(2);L.pushback(3);vector<int>::iterator it=find(L.begin(),L.end(),...
}publicvoidinOrder(TreeNode root) {if(root==null)return; System.out.println(pre); inOrder(root.left);if(root.val==pre) { cur++; }elsecur=1; pre=root.val;if(cur>max) { max=cur; res.clear(); res.add(root.val); }elseif(cur==max) ...
SubTreeInfo(int min, int max, int size, bool isBST) { this->min = min; this->max = max; this->size = size; this->isBST = isBST; } }; // Recursive function to find the size of the largest BST in a given binary tree SubTreeInfo* findLargestBST(Node* root) { // Base case...