The inverse of the 3x3 matrix can be determined by calculating the determinant and matrix of cofactors and then dividing each term by determinant. Learn more at BYJU'S.
Learn to find the inverse of matrix, easily, by finding transpose, adjugate and determinant, step by step. Also, learn to find the inverse of 3x3 matrix with the help of a solved example, at BYJU’S.
A matrix inverse can be defined as the matrix which when multiplied with the default original matrix results in an identity matrix. The output identity matrix contains ones at its diagonal and all remaining entities are zeros. Finding the inverse of a matrix can be useful for different tasks, ...
百度试题 结果1 题目Find the inverse of matrix A. A=(bmatrix) 1 & -1&2 2&1&-10&2&-2 (bmatrix)Now verify that AA^(-1)=A^(-1) A=I. Explain. 相关知识点: 试题来源: 解析 (bmatrix) 1&0&0 0&1& 00&0&1 (bmatrix) 反馈 收藏 ...
百度试题 结果1 题目Find the inverse of the matrix, if it exists. If it does not exist, write singular."(bmatrix)-1&-2&-23&7&91&4&7(bmatrix) 相关知识点: 试题来源: 解析 (bmatrix)13&6&-4-12&-5&35&2&-1(bmatrix) 反馈 收藏 ...
用row operation也需要用到elementary matrix不是么? 答案 elementary matrix也可以是列变换啊上面的方法不适合计算机自动计算,一般都用数值方法计算逆矩阵. 相关推荐 1 关于逆矩阵的问题 请问find the inverse of a matrix using row operation 和 find the inverse of a matrix using elementary matrix 运算有区别...
(a) Find the inverse of the matrix 相关知识点: 试题来源: 解析 http://gallery.fbcontent.cn/latex?decode=false&latex=%24%24%5Cfrac%7B1%7D%7B4%7D%5Cleft(%5Cbegin%7Barray%7D%7Bll%7D2%20%26amp%3B%202%20%5C%5C3%20%26amp%3B%205%5Cend%7Barray%7D%5Cright)%24%24%25&fontSize=30 ...
(3)(bmatrix)cos x& -sin x sin x& cos x(bmatrix); inverse exists for all x结果一 题目 Find the inverse of the matrix. For what value (s) of x, if any, does the matrix have no inverse? 答案 Find matrix inverse according to the formula: det 相关推荐 1Find the inverse of th...
\(A=\begin{bmatrix}1&-3\\-1&3\end{bmatrix}\).Use row operations on the augmented matrix \([A\mid I]\):\(\left[\begin{array}{cc|cc}1 & -3 &1&0 \\-1 & 3 &0&1\end{array}\right]\)\(\left[\begin{array}{cc|cc}1 & -3&1&0 \\0&0&1&1\end{array}\right]...
A=(bmatrix) 4&7 -1&-2(bmatrix) To find A^(-1) use Gauss-Jordan elimination. This is explained below:Consider the provided matrix:A=(bmatrix) 4&7 -1&-2(bmatrix) [(array)(rr|rr)4 & 7 & 1& 0 -1 & -2 & 0&1 (array)], R_1= (R_1)4~ [(array)(rr|rr)1&74...